Robert's puzzles 2020-04-06

Post puzzles for others to solve here.

Robert's puzzles 2020-04-06

Postby Mauriès Robert » Mon Apr 06, 2020 6:09 am

Hi all,
This is a more difficult grid than the previous one. Its TDP level is 2 and its rating on Hodoku is higher than 6000.
Good resolution.
Robert

...1...3..7....9.68..9..2....42...6.3.7...1.4.5..147....2..6..59.3....1..4...1...

Hidden Text: Show
=puzzleImage
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2020-04-06

Postby Cenoman » Mon Apr 06, 2020 2:43 pm

A complex first step (multi-kraken x5)
Code: Select all
 +----------------------+--------------------------+-----------------------+
 |  2456   269    569   |  1      245678   2578    |  458   3      7-8     |
 |  245    7      1     |  3458   23458    2358    |  9     458    6       |
 |  8      3      56    |  9      4567     57      |  2     457    1       |
 +----------------------+--------------------------+-----------------------+
 |  1      89     4     |  2      3578     35789   |  358   6      389     |
 |  3      2689   7     |  568    58       589     |  1     2589   4       |
 |  26     5      689   |  368    1        4       |  7     289    2389    |
 +----------------------+--------------------------+-----------------------+
 |  7      1      2     |  348    3489     6       |  348   489    5       |
 |  9      68     3     |  4578   2458     258     |  468   1      278     |
 |  56     4      568   |  378    2389     1       |  368   2789   23789   |
 +----------------------+--------------------------+-----------------------+


Kraken row (4)r8c457 demonstrating 4r1c7 => 4r8c4
(4)r8c4
(4)r8c5 - r3c5 = r3c8 - (4)r1c7
(4)r8c7 - (4)r1c7

Kraken column (5)r258c4 demonstrating 4r8c4 => 5r5c4
(5)r2c4 - (5=7)r3c6 - r3c8 = r1c9 - r8c9 = (7-4)r8c4
(5)r5c4
(5-4)r8c4

Kraken cell (389)r4c9 demontrating 6r5c2 => 8r4c9
(3)r4c9 - r6c9 = (3-6)r6c4 = r5c4 - (6)r5c2
(8)r4c9
(9)r4c9-(9=86)r48c2 - (6)r5c2

Kraken column (5)r139c3 demontrating 5r1c7 => 5r3c3
(5)r1c3 - (5)r1c7
(5)r3c3
(5)r9c3 - (5=62)r69c1 - r5c2 = (2-5)r5c8 = r4c7 - (5)r1c7

Kraken cell (458)r1c7
(4)r1c7 => (4)r8c4 => (5-6)r5c4 = (6)r5c2 => (8)r4c9
(5)r1c7 => (5)r3c3 - (5=7)r3c6 - r3c8 = (7)r1c9
(8)r1c7
=>-8r1c9; three placements & basics

Then end with three AIC's
Code: Select all
 +----------------------+-------------------------+---------------------+
 |  2456   269    569   |  1      24568   258     |  58-4  3      7     |
 |  245    7      1     | x3458   23458   2358    |  9     458    6     |
 |  8      3      56    |  9     c4567    57      |  2    d45     1     |
 +----------------------+-------------------------+---------------------+
 |  1      89     4     |  2      3578    35789   |  58    6      389   |
 |  3     y2689   7     | y568    58      589     |  1     2589   4     |
 |  26     5      689   |  68-3   1       4       |  7     289    389   |
 +----------------------+-------------------------+---------------------+
 |  7      1      2     | G348  Fb3489    6       | a348  E89-4   5     |
 |  9    zC68     3     |  7     x2458   y258     | w468   1     D28    |
 |  56     4     B568   |GA38     29      1       |  368   7     D29    |
 +----------------------+-------------------------+---------------------+

2. Skyscraper (4)r8c7 = r8c5 - r3c5 = r3c8 => -4 r7c8, -4r1c7
3. (3=8)r9c4 - r9c3 = r8c2 - (8=29)r89c9 - r7c8 = (9-3)r7c5 = (3)r79c4 => -3 r6c4; four placements and basics
4. (5)r2c4 = (56)r5c24 - (6=285)r8c269 => -5 r1c6; ste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2020-04-06

Postby totuan » Tue Apr 07, 2020 5:04 pm

My path for this one – ER9.0.
Code: Select all
 *-----------------------------------------------------------------------------*
 | 2456    269     569     | 1       245678  2578    | 458     3       78      |
 | 245     7       1       | 3458    23458   2358    | 9       458     6       |
 | 8       3       56      | 9       4567    57      | 2       457     1       |
 |-------------------------+-------------------------+-------------------------|
 | 1       89      4       | 2       3578    35789   | 358     6       389     |
 | 3       2689    7       | 568     58      589     | 1       2589    4       |
 | 26      5       689     | 368     1       4       | 7       289     2389    |
 |-------------------------+-------------------------+-------------------------|
 | 7       1       2       | 348     3489    6       | 348     489     5       |
 | 9       68      3       | 4578    2458    258     | 468     1       278     |
 | 56      4       568     | 378     2389    1       | 368     2789    23789   |
 *-----------------------------------------------------------------------------*

01- Present as diagram: => r5c2<>6, r5c4=6

Code: Select all
(2)r1c6-r12c1=r2c1-(2=6)r6c1*  (9)r4c9-(9=8)r4c2-(8=6)r8c2*
 ||                             || 
(5)r1c6-(5)r8c6                (3)r4c9-r6c9=(3-6)r6c4=r5c4*
 ||      ||                     ||
 ||     (2)r8c6-(2=78)r18c9----(8)r4c9
 ||      ||                     |
 ||     (8)r8c6-(8=6)r8c2*      | 
 ||                             |   
(7)r1c6-(7=8)r1c9---------------
 ||
 ||                         (4)r8c5-r3c5=r3c8----
 ||                          ||                  |
 ||                         (4)r8c7----(4)r1c7---
 ||                          ||         ||
(8)r1c6-(8=7)r1c9-r8c9=r8c4-(4)r8c4    (5)r1c7-r4c7=r5c8-(58=6)r5c45*   
       |                                ||
        -------------------------------(8)r1c7

02- (5)r8c4=r2c4-(5=7)r3c6-r3c8=r1c9-r8c9=r8c4 => loop: r8c4<>48, r9c9<>7, r3c5<>57, r12c56<>5
03- (5)r2c4=(5-7)r3c6=(7-4)r3c8=r3c5 => r2c4<>4, some singles
04- (5)r2c4=(5-7)r3c6=(7-4)r3c8=r2c8 => r2c8<>5, stte

totuan
totuan
 
Posts: 240
Joined: 25 May 2010
Location: vietnam

Re: Robert's puzzles 2020-04-06

Postby denis_berthier » Tue Apr 14, 2020 1:06 pm

In W6:
Hidden Text: Show
Code: Select all
whip[1]: c4n7{r9 .} ==> r9c5 ≠ 7, r8c5 ≠ 7, r8c6 ≠ 7
whip[1]: r8n5{c6 .} ==> r9c5 ≠ 5, r9c4 ≠ 5
whip[1]: c6n9{r5 .} ==> r5c5 ≠ 9, r4c5 ≠ 9
whip[1]: c4n6{r6 .} ==> r5c5 ≠ 6
biv-chain[3]: r3c6{n7 n5} - r3c3{n5 n6} - b2n6{r3c5 r1c5} ==> r1c5 ≠ 7
whip[4]: r1c9{n8 n7} - c8n7{r3 r9} - r9n9{c8 c5} - r9n2{c5 .} ==> r9c9 ≠ 8
whip[5]: r5c5{n8 n5} - r4n5{c6 c7} - r1c7{n5 n4} - r3n4{c8 c5} - c5n6{r3 .} ==> r1c5 ≠ 8
whip[5]: r4n7{c5 c6} - r3c6{n7 n5} - c4n5{r2 r8} - r8n7{c4 c9} - r1n7{c9 .} ==> r4c5 ≠ 5
whip[5]: c8n7{r9 r3} - r3c6{n7 n5} - r4n5{c6 c7} - c7n8{r4 r1} - r1c9{n8 .} ==> r9c8 ≠ 8
whip[6]: r8c2{n8 n6} - r5n6{c2 c4} - c4n5{r5 r2} - r3c6{n5 n7} - r1n7{c6 c9} - r8n7{c9 .} ==> r8c4 ≠ 8
whip[6]: r4n5{c7 c6} - r3c6{n5 n7} - b3n7{r3c8 r1c9} - c9n8{r1 r8} - c2n8{r8 r5} - r5c5{n8 .} ==> r4c7 ≠ 8
whip[6]: c7n3{r9 r4} - r4n5{c7 c6} - r3c6{n5 n7} - c8n7{r3 r9} - r9n9{c8 c5} - r9n2{c5 .} ==> r9c9 ≠ 3
whip[1]: c9n3{r6 .} ==> r4c7 ≠ 3
naked-single ==> r4c7 = 5
whip[5]: r8n7{c4 c9} - r1c9{n7 n8} - r1c7{n8 n4} - r8n4{c7 c5} - r3n4{c5 .} ==> r8c4 ≠ 5
biv-chain[4]: c5n7{r4 r3} - r3c6{n7 n5} - r8n5{c6 c5} - r5c5{n5 n8} ==> r4c5 ≠ 8
biv-chain[4]: r3c3{n6 n5} - b3n5{r3c8 r2c8} - c4n5{r2 r5} - b5n6{r5c4 r6c4} ==> r6c3 ≠ 6
naked-pairs-in-a-block: b4{r4c2 r6c3}{n8 n9} ==> r5c2 ≠ 9, r5c2 ≠ 8
biv-chain[4]: r3c3{n6 n5} - b3n5{r3c8 r2c8} - c4n5{r2 r5} - r5n6{c4 c2} ==> r1c2 ≠ 6
whip[4]: c2n8{r4 r8} - c2n6{r8 r5} - r5n2{c2 c8} - r5n8{c8 .} ==> r4c6 ≠ 8
biv-chain[3]: b4n9{r6c3 r4c2} - r4n8{c2 c9} - c9n3{r4 r6} ==> r6c9 ≠ 9
biv-chain[5]: r5n2{c8 c2} - r5n6{c2 c4} - c4n5{r5 r2} - r3c6{n5 n7} - c8n7{r3 r9} ==> r9c8 ≠ 2
whip[1]: b9n2{r9c9 .} ==> r6c9 ≠ 2
biv-chain[4]: c8n2{r6 r5} - r5c2{n2 n6} - r8c2{n6 n8} - r4n8{c2 c9} ==> r6c8 ≠ 8
biv-chain[4]: r9n2{c5 c9} - c9n9{r9 r4} - r6n9{c8 c3} - c3n8{r6 r9} ==> r9c5 ≠ 8
whip[5]: b6n3{r6c9 r4c9} - c9n9{r4 r9} - r9n2{c9 c5} - b8n3{r9c5 r7c5} - r7n9{c5 .} ==> r6c4 ≠ 3
hidden-single-in-a-row ==> r6c9 = 3
naked-pairs-in-a-row: r4{c2 c9}{n8 n9} ==> r4c6 ≠ 9
hidden-single-in-a-block ==> r5c6 = 9
whip[3]: r5c5{n8 n5} - r8n5{c5 c6} - c6n8{r8 .} ==> r2c5 ≠ 8
whip[3]: b2n8{r2c6 r2c4} - r6n8{c4 c3} - b7n8{r9c3 .} ==> r8c6 ≠ 8
whip[1]: c6n8{r2 .} ==> r2c4 ≠ 8
biv-chain[4]: r3c6{n7 n5} - b3n5{r3c8 r2c8} - r2n8{c8 c6} - c6n3{r2 r4} ==> r4c6 ≠ 7
naked-single ==> r4c6 = 3
naked-single ==> r4c5 = 7
biv-chain[4]: r1n7{c9 c6} - r3c6{n7 n5} - r8c6{n5 n2} - b9n2{r8c9 r9c9} ==> r9c9 ≠ 7
biv-chain[5]: r3c6{n7 n5} - c4n5{r2 r5} - r5c5{n5 n8} - b6n8{r5c8 r4c9} - r1c9{n8 n7} ==> r1c6 ≠ 7
singles ==> r3c6 = 7, r1c9 = 7, r9c8 = 7, r8c4 = 7
hidden-pairs-in-a-row: r9{n2 n9}{c5 c9} ==> r9c5 ≠ 3
x-wing-in-columns: n8{c2 c9}{r4 r8} ==> r8c7 ≠ 8, r8c5 ≠ 8
finned-x-wing-in-rows: n4{r3 r8}{c5 c8} ==> r7c8 ≠ 4
whip[1]: b9n4{r8c7 .} ==> r1c7 ≠ 4
naked-single ==> r1c7 = 8
hidden-single-in-a-block ==> r2c6 = 8
x-wing-in-columns: n8{c5 c8}{r5 r7} ==> r7c4 ≠ 8, r5c4 ≠ 8
naked-pairs-in-a-row: r7{c4 c7}{n3 n4} ==> r7c5 ≠ 4, r7c5 ≠ 3
stte


Or tW8:
Hidden Text: Show
Code: Select all
whip[1]: c4n7{r9 .} ==> r9c5 ≠ 7, r8c5 ≠ 7, r8c6 ≠ 7
whip[1]: r8n5{c6 .} ==> r9c5 ≠ 5, r9c4 ≠ 5
whip[1]: c6n9{r5 .} ==> r5c5 ≠ 9, r4c5 ≠ 9
whip[1]: c4n6{r6 .} ==> r5c5 ≠ 6
biv-chain[3]: r3c6{n7 n5} - r3c3{n5 n6} - b2n6{r3c5 r1c5} ==> r1c5 ≠ 7
t-whip[6]: c5n7{r4 r3} - r3c6{n7 n5} - r3c8{n5 n4} - c8n7{r3 r9} - r8n7{c9 c4} - r8n5{c4 .} ==> r4c5 ≠ 5
t-whip[7]: c5n7{r4 r3} - r3c6{n7 n5} - r3c8{n5 n4} - c8n7{r3 r9} - r8n7{c9 c4} - r8n5{c4 c5} - r5c5{n5 .} ==> r4c5 ≠ 8
t-whip[8]: c8n7{r9 r3} - r3c6{n7 n5} - r4n5{c6 c7} - b3n5{r1c7 r2c8} - b3n4{r2c8 r1c7} - r3n4{c8 c5} - r8n4{c5 c4} - r8n7{c4 .} ==> r9c9 ≠ 7
t-whip[8]: c4n7{r8 r9} - c8n7{r9 r3} - r3c6{n7 n5} - r4n5{c6 c7} - b3n5{r1c7 r2c8} - c8n4{r2 r7} - r3n4{c8 c5} - c4n4{r2 .} ==> r8c4 ≠ 5
biv-chain[5]: r5n2{c8 c2} - r5n6{c2 c4} - c4n5{r5 r2} - r3c6{n5 n7} - c8n7{r3 r9} ==> r9c8 ≠ 2
whip[1]: b9n2{r9c9 .} ==> r6c9 ≠ 2
t-whip[4]: r9n2{c9 c5} - r8n2{c6 c9} - b9n7{r8c9 r9c8} - r9n9{c8 .} ==> r9c9 ≠ 8
t-whip[4]: r9n2{c9 c5} - r8n2{c6 c9} - b9n7{r8c9 r9c8} - r9n9{c8 .} ==> r9c9 ≠ 3
whip[1]: c9n3{r6 .} ==> r4c7 ≠ 3
t-whip[5]: r8n4{c5 c7} - r8n6{c7 c2} - r5n6{c2 c4} - c4n5{r5 r2} - c4n4{r2 .} ==> r7c5 ≠ 4
t-whip[5]: r5c5{n8 n5} - c4n5{r5 r2} - c8n5{r2 r3} - r3c3{n5 n6} - c5n6{r3 .} ==> r1c5 ≠ 8
biv-chain[6]: r8c2{n8 n6} - r5n6{c2 c4} - c4n5{r5 r2} - r3c6{n5 n7} - r1n7{c6 c9} - r8n7{c9 c4} ==> r8c4 ≠ 8
t-whip[7]: r3c6{n7 n5} - c4n5{r2 r5} - r5n6{c4 c2} - r8c2{n6 n8} - r8c6{n8 n2} - r8c9{n2 n7} - r1n7{c9 .} ==> r4c6 ≠ 7
hidden-single-in-a-block ==> r4c5 = 7
t-whip[6]: c9n9{r6 r9} - r9n2{c9 c5} - c5n9{r9 r7} - c5n3{r7 r2} - c6n3{r2 r4} - c6n9{r4 .} ==> r5c8 ≠ 9
t-whip[7]: r5n9{c6 c2} - r5n2{c2 c8} - r6n2{c8 c1} - b4n6{r6c1 r6c3} - r3c3{n6 n5} - c8n5{r3 r2} - c4n5{r2 .} ==> r5c6 ≠ 5
t-whip[6]: r5c6{n9 n8} - r5c5{n8 n5} - c4n5{r5 r2} - r3c6{n5 n7} - r1c6{n7 n2} - c2n2{r1 .} ==> r5c2 ≠ 9
hidden-single-in-a-row ==> r5c6 = 9
t-whip[7]: c4n4{r8 r2} - c4n5{r2 r5} - r5n6{c4 c2} - b4n2{r5c2 r6c1} - r2c1{n2 n5} - c8n5{r2 r3} - r3n4{c8 .} ==> r8c5 ≠ 4
whip[1]: c5n4{r3 .} ==> r2c4 ≠ 4
biv-chain[4]: b7n8{r9c3 r8c2} - r8n6{c2 c7} - r8n4{c7 c4} - b8n7{r8c4 r9c4} ==> r9c4 ≠ 8
biv-chain[4]: r1c9{n8 n7} - b9n7{r8c9 r9c8} - r9c4{n7 n3} - r6n3{c4 c9} ==> r6c9 ≠ 8
biv-chain[4]: r3c6{n5 n7} - c8n7{r3 r9} - r9c4{n7 n3} - b5n3{r6c4 r4c6} ==> r4c6 ≠ 5
hidden-single-in-a-row ==> r4c7 = 5
t-whip[3]: b6n8{r6c8 r4c9} - r1c9{n8 n7} - c8n7{r3 .} ==> r9c8 ≠ 8
biv-chain[3]: r9c4{n3 n7} - r9c8{n7 n9} - b8n9{r9c5 r7c5} ==> r7c5 ≠ 3
biv-chain[4]: c5n3{r2 r9} - r9c4{n3 n7} - c8n7{r9 r3} - r3n4{c8 c5} ==> r2c5 ≠ 4
hidden-pairs-in-a-block: b2{r1c5 r3c5}{n4 n6} ==> r3c5 ≠ 5, r1c5 ≠ 5, r1c5 ≠ 2
biv-chain[4]: c5n3{r2 r9} - r9c4{n3 n7} - c8n7{r9 r3} - c8n5{r3 r2} ==> r2c5 ≠ 5
biv-chain[4]: r5n6{c2 c4} - c4n5{r5 r2} - b3n5{r2c8 r3c8} - r3c3{n5 n6} ==> r6c3 ≠ 6
naked-pairs-in-a-block: b4{r4c2 r6c3}{n8 n9} ==> r5c2 ≠ 8
biv-chain[4]: r5n6{c2 c4} - c4n5{r5 r2} - b3n5{r2c8 r3c8} - r3c3{n5 n6} ==> r1c2 ≠ 6
biv-chain[4]: b5n3{r4c6 r6c4} - r6n6{c4 c1} - c2n6{r5 r8} - c2n8{r8 r4} ==> r4c6 ≠ 8
naked-single ==> r4c6 = 3
hidden-single-in-a-block ==> r6c9 = 3
biv-chain[3]: r2n3{c5 c4} - c4n5{r2 r5} - r5c5{n5 n8} ==> r2c5 ≠ 8
biv-chain[4]: c3n8{r9 r6} - b4n9{r6c3 r4c2} - c9n9{r4 r9} - r9n2{c9 c5} ==> r9c5 ≠ 8
hidden-triplets-in-a-row: r9{n5 n6 n8}{c3 c1 c7} ==> r9c7 ≠ 3
hidden-single-in-a-block ==> r7c7 = 3
t-whip[3]: r7n8{c5 c8} - b6n8{r6c8 r4c9} - c2n8{r4 .} ==> r8c6 ≠ 8
whip[1]: c6n8{r2 .} ==> r2c4 ≠ 8
t-whip[3]: r7n8{c5 c8} - b6n8{r6c8 r4c9} - c2n8{r4 .} ==> r8c5 ≠ 8
whip[1]: b8n8{r7c5 .} ==> r7c8 ≠ 8
naked-pairs-in-a-block: b8{r8c5 r8c6}{n2 n5} ==> r9c5 ≠ 2
stte
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris


Return to Puzzles