Robert's puzzles 2020-03-13

Post puzzles for others to solve here.

Robert's puzzles 2020-03-13

Postby Mauriès Robert » Fri Mar 13, 2020 2:04 pm

Hi all,
I suggest you solve this puzzle :

3...4...8.2..8..5...5.2.1.....974.......3....7...6...963..5..41...2.3.....7...9..

puzzle: Show
Image

Good resolution
Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2020-03-13

Postby Cenoman » Fri Mar 13, 2020 9:02 pm

The most reasonable for this puzzle is as few steps as possible. Here is a 3-step solution
Code: Select all
 +-----------------------+-----------------+------------------------+
 |  3      7      1      |  5    4    9    |  6      2      8       |
 |  9      2      46     |  36   8    1    |  347    5      347     |
 | a48     46-8   5      |  36   2    7    |  1      9     b34      |
 +-----------------------+-----------------+------------------------+
 |  158    1568   2368   |  9    7    4    |  358    1368   2356    |
 |  1458   9      2468   |  18   3    25   |  4578   1678   24567   |
 |  7      1458   2348   |  18   6    25   |  3458   138    9       |
 +-----------------------+-----------------+------------------------+
 |  6      3      9      |  7    5    8    |  2      4      1       |
 |  1458   1458   48     |  2    9    3    |  578    678    567     |
 |  2     d58     7      |  4    1    6    |  9      38    c35      |
 +-----------------------+-----------------+------------------------+

1. Y-chain: (8=4)r3c1 - (4=3)r3c9 - (3=5)r9c9 - (5=8)r9c2 => -8 r3c2; 1 placement (+8r3c1) & basics


Code: Select all
 +----------------------+-----------------+--------------------------+
 |  3     7      1      |  5    4    9    |  6        2      8       |
 |  9     2      46     |  36   8    1    |  347      5      347     |
 |  8     46     5      |  36   2    7    |  1        9      34      |
 +----------------------+-----------------+--------------------------+
 |  15    1568  Z2368   |  9    7    4    | z58-3   Dh1368   2356    |
 | c145   9      2468   |  18   3   W25   | V4578     1678   24567   |
 |  7    b1458 Yb2348   |  18   6   X25   | a458-3  Dh138    9       |
 +----------------------+-----------------+--------------------------+
 |  6     3      9      |  7    5    8    |  2        4      1       |
 | d145   1458  e48     |  2    9    3    | A578      678    567     |
 |  2    f58     7      |  4    1    6    |  9      Cg38    B35      |
 +----------------------+-----------------+--------------------------+

2. (4)r6c7 = r6c23 - r5c1 = r8c1 - (4=8)r8c3 - r9c2 = (8-3)r9c8 = (3)r46c8 => -3 r6c7

3. Kraken column (5)r4568c7
(5)r4c7
(5)r5c7 - (5=2)r5c6 - r6c6 = (2-3)r6c3 = (3)r4c3
(5-4)r6c7 = r6c23 - r5c1 = r8c1 - (4=8)r8c3 - r9c2 = (8-3)r9c8 = (3)r46c8
(5)r8c7 - (5=3)r9c9 - r9c8 = (3)r46c8
=>-3r4c7; lclste

FWIW solutions in one step exist, e.g. this triple kraken one, (5)c7, (3)c7, (4)c1 (as a net)
Code: Select all
 
                                                                              (4-8)r3c1 = (8)r3c2 *
                                                                               ||
(5)r6c7 - - - - - - - - - - - - - - - - - - - - - - - - - - (4)r6c7 = r6c23 - (4)r5c1
 ||                                                        /                   ||
(5)r8c7 - - - (5=3)r9c9 - r9c8 = (3)r46c8 - - -     (3)r6c7                   (4)r8c1 - (4=8)r8c3 *
 ||                                             \    ||
(5)r5c7 - (5=2)r5c6 - r6c6 = (2-3)r6c3 = r4c3 -  - -(3)r4c7
 ||                                             /    ||
(5)r4c7 - - - - - - - - - - - - - - - - - - - -     (3)r2c7 - (3=6)r2c4 - (6=4)r2c3 - (4=8)r8c3 *
-------------------
=> -8 r89c2; lclste

...with its 13x13 (rather simple) TM
Hidden Text: Show
Code: Select all
8r3c2 8r3c1
8r8c3       4r8c3
      4r3c1 4r8c1 4r5c1
                  4r6c23 4r6c7       
            4r2c3              6r2c3
                               6r2c4 3r2c4
                         3r6c7       3r2c7 3r4c7
                                           3r46c8 3r9c8
                                                  3r9c9 5r9c9
                                           3r4c3              3r6c3
                                                              2r6c3 2r6c6
                                                                    2r5c6 5r5c6
                         5r6c7             5r4c7        5r8c7             5r5c7
-------------------
=> -8 r89c2; lclste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2020-03-13

Postby pjb » Fri Mar 13, 2020 11:55 pm

1. Continuous chain: 4=3)r3c9 - (3=5)r9c9 - (5=8)r9c2 - (8=4)r8c3 - r2c3 = r2c79 - (4=3)r3c9 => -3 r4c9, -8 r8c12, -4 r56c3
2. ALS: (8=4)r3c1 - (4=8)r2456c3 => -8 r45c1
3. Skyscraper: (4)r3c9 = r3c2 - r6c2 = r6c7 => -4 r2c7, r5c9
4. Almost xy-wing at r9c9, r8c7 and r2c7: (8)r8c7 - (8=4)r8c3 - (4=6)r2c3 - (6=3)r2c4, => -3 r2c9; lclste

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Robert's puzzles 2020-03-13

Postby Mauriès Robert » Sat Mar 14, 2020 12:39 pm

Hi,
Nice resolutions from Cenoman and pjb.
Here's mine in two steps with anti-tracks exploiting all four:

1) P'(4r2c3) : -4r2c3->6r2c3->3r2c4->3r3c9->5r9c9->8r2c9->(4r8c3 et 8r3c1) => -4r3c1, -4r56c3

puzzle1: Show
Image

2) P'(4r3c9) : -4r3c9->(4r3c2&3r3c9)->4r6c7-> ... -> 7r2c9 (see diagram and puzzle) => -4r2c7, -4r2c9 => r3c9=4 and fine with the basic techniques.

Code: Select all
-4r3c9->4r3c2->[4r6c7---------->3r6c3->2r6c6->5r5c6]->78r5c7->7r2c9
         \                   /                              /
          ->[3r3c9->5r9c9->3r9c8]->78r8c7-------------------

puzzle2: Show
Image

Note: it is possible to solve with only one step with an anti-track P'(4r2c3) which leads to contradiction.
Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France


Return to Puzzles