This fairly easy puzzle requires only one step to solve.
..3.7.9............6.521.8...........42.6.35.39..5..14.2..1..3.9..8.5..6..4...8..
puzzle: Show
Good solving.
Robert
 +--------------------------+---------------------------+-------------------------+
 | f12458    158    3       |ga46       7    ga468      |  9      ga246    125    | 
 | f124578   1578   1578    |  3469     3489   34689    |  124567   2467   1257   | 
 | e47       6      9       |  5        2      1        | d47       8      3      | 
 +--------------------------+---------------------------+-------------------------+
 |  15678    1578   15678   |  123479   3489   234789   | d267      2679   2789   | 
 |  178      4      2       |  179      6      789      |  3        5      789    | 
 |  3        9      678     |  27       5      278      | d267      1      4      | 
 +--------------------------+---------------------------+-------------------------+
 |  5678     2      5678    |  4679     1      4679     |  457      3      579    | 
 |  9        137    17      |  8        34     5        | c1247    b247    6      | 
 |  1567     1357   4       |  23679    39     23679    |  8        79     1579   | 
 +--------------------------+---------------------------+-------------------------+Cenoman wrote:(8=642)r1c468 - r8c8 = r8c7 - (2=674)r346c7 - (4)r3c1 = (24)r12c1 - (246=8)r1c468 => +8 r1c6; lclste
eleven wrote:Cenoman wrote:(8=642)r1c468 - r8c8 = r8c7 - (2=674)r346c7 - (4)r3c1 = (24)r12c1 - (246=8)r1c468 => +8 r1c6; lclste
Very nice !
I saw, that a missing 8r1c6 would lead to a 18 pair in r1c12 (r1, c9, b9) and a contradicting 1 in r2c9 then, but could not find this chain with the 24 pair.
Mauriès Robert wrote:Hi Cenoman,
I prefer your resolution with Kraken to the one with AIC because it is like crossing two conjugated tracks P(4r12c1) and P(4r3c1) like this :
P(4r12c1) : 4r12c1->246r1c148->8r1c6
P(4r3c1) : 4r3c1->7r3c7->26r46c7->2r8c8->46r1c48->8r1c6
=> r1c6=8, stte
Which can be spelled, I believe, in the Kraken way:
42r12c1-(246=8)r1c468
4r3c1-(4=7)r3c7-(7=62)r46c7-2r8c7=r8c8-(2=468)r1c468
=> r1c8=8, stte
Robert
(8=642)r1c468 - r8c8 = r8c7 - (2=674)r346c7 - (4)r3c1 = (24)r12c1 - (246=8)r1c468 => +8 r1c6