- Code: Select all
+-----------------------+----------------------+----------------------+
| 79-36 b23 b1236 | 37-29 b129 4 | b168 5 b168 |
| 4567 245 1246 | 257 8 57 | 9 3 16 |
| 589-3 58-3 a13 | 35-9 a19 6 | 4 2 7 |
+-----------------------+----------------------+----------------------+
| 46 9 46 | 1 5 78 | 3 78 2 |
| 2 1 5 | 79 3 789 | 78 6 4 |
| 38 38 7 | 6 4 2 | 5 1 9 |
+-----------------------+----------------------+----------------------+
| 1 6 8 | 4 2-9 35 | 27 79 35 |
| 345 2345 9 | 25 7 135 | 1268 48 13568 |
| 345 7 234 | 8 6 1359 | 12 49 135 |
+-----------------------+----------------------+----------------------+
Doubly linked ALS-XZ (3=19)r3c35 - (9=12683)r1c23579 loop => -36 r1c1, -3 r3c12, -29 r1c4, -9 r3c4, -9 r7c5; ste
Can be presented also as an (A)ALS chain: (139)r3c35 -39- (12369)r1c235 -16- (168)r1c79 (Sue de Coq-like: an AALS doubly linked to two ALS's with four different restricted commons)
Or in eleven's style (123689) @ r1c23579, r3c35, 6 digits in 7 cells, one must be twice, only digit 1 can be twice, all others must be there; same eliminations.
...or as a symmetric pigeonhole matrix:
- Code: Select all
r1 r1 b1 r1 c5 r1 r3
b2 b3
r1c2 2 3
r1c3 1 2 3 6
r1c5 1 2 9
r1c7 1 6 8
r1c9 1 6 8
r3c3 9 1
r3c5 3 1
--------------------------
=> -36 r1c1, -3 r3c12, -29 r1c4, -9 r3c4, -9 r7c5; same eliminations