Solution in eight steps, out of which two are complex (multikrakens)
- Code: Select all
+----------------------------+----------------------+------------------------+
| 347 12347 6 | 1345 127 2357 | 9 8 123 |
| 3479 12347 3479 | 134 8 237 | 5 1236 1236 |
| 35 1238 358 | 9 12 6 | 123 4 7 |
+----------------------------+----------------------+------------------------+
| 1 678 789 | 68 3 4 | 267 2679 5 |
| 345679 34678 345789 | 168 126 28 | 3467 3679 3469 |
| 2 346 34 | 7 5 9 | 1346 136 8 |
+----------------------------+----------------------+------------------------+
| 8 9 347 | 2 67 1 | 3467 5 346 |
| 367 367 1 | 58 4 58 | 2367 23679 2369 |
| 467 5 2 | 36 9 37 | 8 167 146 |
+----------------------------+----------------------+------------------------+
1. (7=3)r9c6 - (3=
127)b2p268 => -7 r1c6
2. Kraken row (7)r2c1236
(79)r2c13
(7)r2c2 - (7=
3684)r4568c2- (4=3)r6c3
(7)r2c6 - r1c5 = r7c5 - (7=43)r7c3
=> -3 r2c3
3. (3=4)r6c3 - r56c2 = r12c2 - (4=
793*5)b1p1467 - r3c3 = (5)r5c3 => -3 r3c3*, r5c3
4. (4)r6c23 = (4-1)r6c7 = (1-3)r3c7 = r3c12 - (3=
794)b1p146 - r12c2 = (4)r56c2 => -4 r5c13
5. Double kraken, cell (347)r7c3 & row (7)r2c1236
(3)r7c3 - (3=4)r6c3 - r56c2 = r12c2 - (4=
793)b1p146 - r3c12 = (3)r3c7
(4)r7c3 - (4=
3671)r9c1468 - r6c8 = (1)r6c7
(7)r7c3 - [(7)r7c5 = r1c5 -
r2c6 = (79)r2c13 - (4)r2c3 = (34)r67c3] =
(7)r2c2 - (7=
493)b1p146 - r3c12 = (3)r3c7
=> -1 r3c7; one placement
Same as a net
:
- Code: Select all
(4)r7c3 - (4=3671)r9c1468 - r6c8 = (1)r6c7 *
||
(3)r7c3 - (3=4)r6c3 - r56c2 = r12c2 - - (4=793)b1p146
|| \
- - (7)r7c5 = r1c5 - (7)r2c6 (3)r3c12 = (3)r3c7 *
|| / || /
(7)r7c3 (7)r2c2 - (7=493)b1p146
\ ||
(34)r67c3 = (4)r2c3 - (79)r2c13
--------
=> -1 r3c7
6. Quadruple kraken, cell (267)r4c7 & cell (368)r8c2 & almoste kite (7)r7c6 & cell (479)r2c3
(2)r4c7 - r8c7 = (29)r8c89
(6)r4c7 - [(6)r6c78 = r6c2 -
(6=7)r8c2 - (7=
86)r4c24] =
(3)r8c2(7)r4c7 -
r7c7 = [
(7)r7c3 = r7c5 - r9c6 = r2c6] - (7)r2c3
||(4)r2c3 - (4=3)r6c3 - r7c3 = (3)r8c12
||(9)r2c3 - (9=
6782)r4c2347 - r8c7 = (29)r8c89
=> -3 r8c89
Same as a net:
- Code: Select all
(6)r6c78 = r6c2 - (6)r8c2
/ ||
(6)r4c7 (3)r8c2 *
|| \ ||
- (6=87)r4c24 - (7)r8c2
||
r7c3 - - - - - - (4)r2c3 - (4=3)r6c3 - r7c3 = (3)r8c12 *
|| || \ ||
(7)r4c7 - r7c7 - - (7)r2c3
|| || / ||
r7c5 - r9c6 = r2c6 (9)r2c3 - (9=6782)r4c2347
|| \
(2)r4c7 - - - - - - - - - - - - - - - - - - - - - (2)r8c7 = (29)r8c89 *
---------
=> -3 r8c89
- Code: Select all
+--------------------------+---------------------+-----------------------+
| 347 12347 6 | 1345 127 235 | 9 8 123 |
| 3479 12347 479 | 134 8 237 | 5 1236 1236 |
| 35 1238 58 | 9 12 6 | 23 4 7 |
+--------------------------+---------------------+-----------------------+
| 1 678 789 | 68 3 4 | 267 2679 5 |
| 35679 3678 5789 | 168 126 28 | 3467 3679 3469 |
| 2 346 34 | 7 5 9 | 1 36 8 |
+--------------------------+---------------------+-----------------------+
| 8 9 347 | 2 67 1 | 3467 5 346 |
| 367 367 1 | 58 4 58 | 2367 2679 269 |
| 467 5 2 | 36 9 37 | 8 167 146 |
+--------------------------+---------------------+-----------------------+
7. (3=4)r6c3 - r6c2 = r12c2 - (4=
793)b1p146 - r3c12 = r3c7 - r8c7 = (3)r8c12 => -3 r7c3; four placements
- Code: Select all
+-----------------------+---------------------+---------------------+
| 347 1237 6 | 1345 127 235 | 9 8 123 |
| 3479 1237 479 | 134 8 237 | 5 123 6 |
| 35 1238 58 | 9 12 6 | 23 4 7 |
+-----------------------+---------------------+---------------------+
| 1 678 789 | 68 3 4 | 27 279 5 |
| 5679 678 5789 | 168 126 28 | 347 379 349 |
| 2 4 3 | 7 5 9 | 1 6 8 |
+-----------------------+---------------------+---------------------+
| 8 9 47 | 2 67 1 | 3467 5 34 |
| 367 367 1 | 58 4 58 | 267 279 29 |
| 467 5 2 | 36 9 37 | 8 17 14 |
+-----------------------+---------------------+---------------------+
8. (7)r9c6 = r7c5 - (7=4)r7c3 - r9c1 = (4-1)r9c9 = (1)r8c8 => -7 r9c8; ste