Robert's puzzles 2019-11-30

Post puzzles for others to solve here.

Robert's puzzles 2019-11-30

Postby Mauriès Robert » Sat Nov 30, 2019 11:47 am

Hi,
I propose this puzzle to your resolution. It is a little easier than the previous one.

..9...7...8.....9.7..391..8.6.....8..1..6..5...57.26.....2.3...5..8.9..637.....24

puzzle: Show
Image

Good sudoku.
Robert
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2019-11-30

Postby totuan » Sat Nov 30, 2019 4:00 pm

Hi All,
Robert’s puzzles 2019-11-30
..9...7...8.....9.7..391..8.6.....8..1..6..5...57.26.....2.3...5..8.9..637.....24

After SSTS
Code: Select all
 *--------------------------------------------------------------------*
 | 1246   2345   9      | 456    258    4568   | 7      1346   123    |
 | 1246   8      12346  | 456    25     7      | 12345  9      123    |
 | 7      245    246    | 3      9      1      | 245    46     8      |
 |----------------------+----------------------+----------------------|
 | 249    6      2347   | 1459   135    45     | 1234   8      12379  |
 | 2489   1      2347   | 49     6      48     | 234    5      2379   |
 | 489    349    5      | 7      138    2      | 6      134    139    |
 |----------------------+----------------------+----------------------|
 | 1469   49     146    | 2      47     3      | 8      17     5      |
 | 5      24     124    | 8      47     9      | 13     137    6      |
 | 3      7      8      | 156    15     56     | 9      2      4      |
 *--------------------------------------------------------------------*

Thanks for the puzzle, my path for this one - ER9.0

01- (2=5)r2c5-r2c7=r3c7-r3c2=(5-3)r1c2=r2c3 => r2c3<>2
02- Present as diagram: => r6c2<>4

Code: Select all
(2-37)r45c3=(3)r6c2*
 ||
(2)r3c3---(6)r3c3=r3c8-(4)r3c8
 ||    |                ||
 ||     ---------------(4)r3c3
 ||                     ||
 ||                    (4)r3c7-r13c8=r6c8*
 ||                     ||
 ||                    (4)r3c2*
 ||
(2)r8c3-(2=4)r8c2*

03- [X-wing 3’s r16c28]=(3-7)r8c8=r7c8-(47=9)r7c25-(9=3)r6c2 => r6c59<>3, r4c5=3
04- Present as diagram: => r6c2<>9, some singles

Code: Select all
(1-5)r2c7=r3c7-r3c2=(5-3)r1c2=r6c2*
 ||
(1)r4c7-(1=9)r6c9*
 ||
(1-3)r8c7=r8c8-r6c8=r6c2*

From here the puzzle has many way to finish.
05- (4)r6c1=r6c8-(4=6)r3c8-r3c3=r7c3-(6=4)r7c1 => r1c1245, r1c8<>4
06- (6)r2c1=(6-4)r2c4=r2c7-(4=6)r3c8 => r3c3<>6, stte

Edit: As reference with complex move :D
Present as diagram: => r6c2<>49, some singles
Code: Select all
(2-37)r45c3=(3)r6c2*
 ||
(2)r3c3-(6)r3c3=r3c8-(4)r3c8                        (1)r1c8-(1=7)r7c8-(47=9)r7c25*
 ||    |              ||                             ||
 ||     -------------(4)r3c3                        (3)r1c8-r1c2=r6c2*
 ||                   ||                             ||
 ||                  (4)r3c7-r13c8=r6c8*—-(4=6)r3c8-(6)r1c8
 ||                   ||                |            ||
 ||                  (49)r37c2*          -----------(4)r1c8     
 ||
(2)r8c3-(2=49)r78c2*


Have a nice weekend to all :D !
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Robert's puzzles 2019-11-30

Postby Cenoman » Sat Nov 30, 2019 5:27 pm

Code: Select all
 +------------------------+----------------------+-------------------------+
 |  1246   2345   9       |  456    258   4568   |  7       1346   123     |
 |  1246   8      12346   |  456    25    7      |  12345   9      123     |
 |  7      245    246     |  3      9     1      |  245     46     8       |
 +------------------------+----------------------+-------------------------+
 |  249    6      2347    |  1459   135   45     |  1234    8      12379   |
 |  2489   1      2347    |  49     6     48     |  234     5      2379    |
 |  489    349    5       |  7      138   2      |  6       134    139     |
 +------------------------+----------------------+-------------------------+
 |  1469   49     146     |  2      47    3      |  8       17     5       |
 |  5      24     124     |  8      47    9      |  13      137    6       |
 |  3      7      8       |  156    15    56     |  9       2      4       |
 +------------------------+----------------------+-------------------------+

1. [(1)r8c7 = r78c8 - (1=4)r6c8 - (4=231)r458c7] = (3)r6c8 - r6c2 = (3-5)r1c2 = r3c2 - r3c7 = (5)r2c7 => -1 r2c7
2. Almost kite [(3)r6c2=r1c2-r2c3=r2c9] = (3-5)r2c7 = r3c7 - r3c2 = (5-3)r1c2 = (3)r6c2 => -3 r6c9
3. (9=1)r6c9 - r12c9 = r1c8 - (1=479)r7c258 => -9 r6c2; (+9r7c2)
4. (2=5)r2c5 - r2c7 = (5-2)r3c7 = (2)r3c23 => -2 r2c13
5. Almost grouped L-wing [(1)r1c1 = r1c89 - (1=2)r2c9 - r3c7 = (2)r3c23] = (3)r2c9 - r2c3 = (3-72)r45c3 = (2)r45c1 => -2 r1c1
Code: Select all
 +-----------------------+----------------------+------------------------+
 |  146  f245-3  9       |  456    258   4568   |  7     c1346   123     |
 |  146   8      1346    |  456    25    7      |  2345   9      123     |
 |  7    e245   e246     |  3      9     1      | d245   c46     8       |
 +-----------------------+----------------------+------------------------+
 |  29    6      347     |  1459   135   45     |  1234   8      12379   |
 |  289   1      347     |  49     6     48     |  234    5      2379    |
 |  89   a34     5       |  7      138   2      |  6     b134    19      |
 +-----------------------+----------------------+------------------------+
 |  146   9      146     |  2      47    3      |  8      17     5       |
 |  5     24     124     |  8      47    9      |  13     137    6       |
 |  3     7      8       |  156    15    56     |  9      2      4       |
 +-----------------------+----------------------+------------------------+

6. (3=4)r6c2 - r6c8 = r13c8 - (4=2|5)r3c7 - (25)r3c23 = (2|5)r1c2 => -3 r1c2; ste

Edit: added elimination of 2r2c3 in step 4 and subsequently corrected the step 6 PM. Many thanks to totuan for spotting the omission.
Last edited by Cenoman on Sun Dec 01, 2019 9:54 am, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 3006
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2019-11-30

Postby Mauriès Robert » Sat Nov 30, 2019 6:28 pm

Hi Totuan and Cenoman,
Thank you for your very interesting resolutions.
Robert
Last edited by Mauriès Robert on Sun Dec 01, 2019 5:17 pm, edited 1 time in total.
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2019-11-30

Postby Cenoman » Sun Dec 01, 2019 12:04 am

Here is a play with Robert's puzzle, with a single step ste-solution, as in use in this forum :D .
Multi-kraken solution (only 21 krakens needed, ...as Robert told, it was not so difficult :lol: )
Hidden Text: Show
Each kraken (but the last) yields a logical implication between two candidate truths. This output is used in a chain right below in a kraken of one level higher, tagged with the same capital letter. Processed on, up the master kraken giving the elimination (the last one). If needed, digits are used as a third level of tagging intermediate krakens. They are arranged in a indentation showing clearly their levels.

Warning: not guaranteed typo-free !

Code: Select all
 +------------------------+----------------------+-------------------------+
 |  1246   2345   9       |  456    258   4568   |  7       1346   123     |
 |  1246   8      12346   |  456    25    7      |  12345   9      123     |
 |  7      245    246     |  3      9     1      |  245     46     8       |
 +------------------------+----------------------+-------------------------+
 |  249    6      2347    |  1459   135   45     |  1234    8      12379   |
 |  2489   1      2347    |  49     6     48     |  234     5      2379    |
 |  489    349    5       |  7      138   2      |  6       134    139     |
 +------------------------+----------------------+-------------------------+
 |  1469   49     146     |  2      47    3      |  8       17     5       |
 |  5      24     124     |  8      47    9      |  13      137    6       |
 |  3      7      8       |  156    15    56     |  9       2      4       |
 +------------------------+----------------------+-------------------------+

Aa      Kraken row (2)r1c1259
      (2)r1c1-(2=4893)b4p1478-(3)r1c2
      (2-3)r1c2
      (2)r1c5-(2=5)r2c5-r1c456=(5-3)r1c2
      (2)r1c9
      ->(3)r1c2 => (2)r1c9

Ab      Kraken cell (246)r3c3
      (2)r3c3
      (4)r3c3-(4)r1c2
      (6)r3c3-r2c13=(6-4)r2c4=(4)r1c46-(4)r1c2
      ->(4)r1c2 => (2)r3c3

A   Kraken cell (2345)r1c2
   (2)r1c2
   (3)r1c2 => (2)r1c9-(2)r3c7         (Aa)
   (4)r1c2 => (2)r3c3-(2)r3c7         (Ab)
   (5)r1c2-r3c2=(5-2)r3c7
   ->(2)r3c7 => (2)r1c2   

Ba      Kraken cell (1469)r7c1
      (1)r7c1-r78c3=(1-3)r2c3=r1c2-(3=94)r67c2-(4)r8c2
      (4)r7c1-(4)r8c2
      (6)r7c1
      (9)r7c1-(9=4)r7c2
      ->(4)r8c2 => (6)r7c1

B   Kraken column (6)r237c3
   (6-3)r2c3=r1c2-(3=94)r67c2-(4)r8c2
   (6)r3c3
   (6)r7c3-(6)r7c1 => -(4)r8c2         (Ba)
   ->(4)r8c2 =>(6)r3c3


Ca      Kraken column (4)r234578c3
      (4-3)r2c3=(3-2)r1c2
      (4)r3c3
      (4)r45c3-r6c12=r6c8-(4=132)r458c7-r3c7=(2)r3c23-(2)r1c2
      (4)r78c3-(4=2)r8c2-(2)r1c2
      ->(2)r1c2 =>(4)r3c3

Cb      Kraken column (2)r23458c3
      (2)r2c3-(2=5)r2c5-r1c456=(5-3)r1c2
      (2)r3c3
      (2-73)r45c3=(3)r2c3-(3)r1c2
      (2)r8c3-r8c2=(25)r13c2-(3)r1c2
      ->(3)r1c2 =>(2)r3c3

C   Kraken cell (2345)r1c2
   (2)r1c2 => (4-6)r3c3            (Ca)
   (3)r1c2 => (2-6)r3c3            (Cb)
   (4)r1c2-r1c46=(4-6)r2c4=(6)r2c13-(6)r3c3
   (5)r1c2
   ->(6)r3c3 => (5)r1c2

Da      Kraken column (3)r168c8->(4)r7c2 => (3)r6c8
      (3)r1c8-r1c2=(3-9)r6c2=(9-4)r7c2
      (3)r6c8
      (3-7)r8c8=r8c5-(7=4)r7c5-(4)r7c2
      ->(4)r7c2 => (3)r6c8

D   Kraken column (4)r13678c2
   (4)r1c2
   (4)r3c2-(4)r3c7
   (4)r6c2-r6c8=(4)r13c8-(4)r3c7
   (4)r7c2 => (3-4)r6c8=(4)r13c8-(4)r3c7      (Da)
   (4-2)r8c2=r8c3-(2=64)r3c38-(4)r3c7
   -> (4)r3c7 => (4)r1c2

Ea      Kraken row (2)r1c1259
      (2)r1c12-(2=64)r3c38-(4)r3c7
      (2)r1c5-(2=5)r2c5-r2c7=(5-4)r3c7
      (2)r1c9
      -> (4)r3c7 => (2)r1c9

Eb      Kraken row (4)r3c2378
      (4)r3c23-(4)r1c2
      (4)r3c7
      (4-9)r3c8=r3c3-r2c13=(6-4)r2c4=(4)r1c46-(4)r1c2
      -> (4)r1c2 => (4)r3c7


E   Kraken row (3)r1c289
   (3-4)r1c2
   (3)r1c8
   (3-2)r1c9 => -(4)r3c7 => -(4)r1c2      (Ea, Eb)
   ->(4)r1c2 => (3)r1c8

Fa1         Kraken column (6)r237c3
         (6-3)r2c3=r1c2-(3)r1c8
         (6)r3c3-r3c8=(6-3)r1c8
         (6)r7c3
         -> (3)r1c8 => (6)r7c3

Fa      Kraken cell (1469)r7c1-> (3)r1c8 => (4)r7c1
      (1)r7c1-r78c3=(1-3)r2c3=(3)r1c2-(3)r1c8
      (4)r7c1
      (6)r7c1-(6)r7c3 => -(3)r1c8         (Fa1)
      (9)r7c1-r7c2=(9-3)r6c2=(3)r1c2-(3)r1c8
      -> (3)r1c8 => (4)r7c1

Fb1         Kraken row (2)r4c1379-> (2)r5c7 => (2)r4c1
         (2)r4c1
         (2)r4c3-r45c1=r12c1-r3c23=(2)r3c7-(2)r5c7
         (2)r4c79-(2)r5c7
         -> (2)r5c7 => (2)r4c1

Fb2         Kraken cell (234)r5c7
         (2)r5c7
         (3)r5c7-r456c9=(3)r12c9-(3)r1c8
         (4)r5c7-r6c8=(46-3)r13c8
         -> (3)r1c8 => (2)r5c7

Fb3         Kraken row (3)r5c379
         (3)r5c3-r2c3=(3)r1c2-(3)r1c8
         (3)r5c7-r456c9=(3)r12c9-(3)r1c8
         (3)r5c9
         -> (3)r1c8 => (3)r5c9

Fb      Kraken row (9)r4c149
      (9-2)r4c1 => -(2)r5c7 => -(3)r1c8   (Fb1, Fb2)
      (9)r4c4
      (9-7)r4c9=(7-3)r5c9 => -(3)r1c8      (Fb3)
      -> (3)r1c8 => (9)r4c4

F   Kraken row (4)r2c1347
   (4)r2c1-r7c1 => -(3)r1c8         (Fa)
   (4-3)r2c3=(3)r1c2-(3)r1c8
   (4)r2c4-(4=9)r5c4-(9)r4c4 => -(3)r1c8      (Fb)
   (4)r2c7
   -> (3)r1c8 => (4)r2c7

Kraken cell (245)r3c7
(2)r3c7 => (2)r1c2-(2=4)r8c2 => (6)r3c3 => (5)r1c2-r3c2=(5)r3c7-(5)r2c7     (A, B, C)
(4)r3c7 => (4)r1c2 => (3)r1c8 => (4-5)r2c7                                  (D, E, F)
(5)r3c7-(5)r2c7
-> -5 r2c7; ste

Note: please do not expect me to do so every week !
Cenoman
Cenoman
 
Posts: 3006
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2019-11-30

Postby totuan » Sun Dec 01, 2019 5:00 am

Hi Cenoman,
A nice solution!
Cenoman wrote:
Code: Select all
 +-----------------------+----------------------+------------------------+
 |  146  f245-3  9       |  456    258   4568   |  7     c1346   123     |
 |  146   8      12346   |  456    25    7      |  2345   9      123     |
 |  7    e245   e246     |  3      9     1      | d245   c46     8       |
 +-----------------------+----------------------+------------------------+
 |  29    6      347     |  1459   135   45     |  1234   8      12379   |
 |  289   1      347     |  49     6     48     |  234    5      2379    |
 |  89   a34     5       |  7      138   2      |  6     b134    19      |
 +-----------------------+----------------------+------------------------+
 |  146   9      146     |  2      47    3      |  8      17     5       |
 |  5     24     124     |  8      47    9      |  13     137    6       |
 |  3     7      8       |  156    15    56     |  9      2      4       |
 +-----------------------+----------------------+------------------------+

6. (3=4)r6c2 - r6c8 = r13c8 - (4=2|5)r3c7 - (25)r3c23 = (2|5)r1c2 => -3 r1c2; ste

For your step 6, I cannot see how it work... It need to require more stronglinks or steps to eliminate candidates before this step or I miss some things :idea:

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Robert's puzzles 2019-11-30

Postby Cenoman » Sun Dec 01, 2019 10:06 am

totuan wrote:Hi Cenoman,
A nice solution!

Thanks !
totuan wrote:
Cenoman wrote:6. (3=4)r6c2 - r6c8 = r13c8 - (4=2|5)r3c7 - (25)r3c23 = (2|5)r1c2 => -3 r1c2; ste

For your step 6, I cannot see how it work... It need to require more stronglinks or steps to eliminate candidates before this step or I miss some things :idea:
totuan

You missed nothing. With the PM I had first posted, it doesn't work. The strong link '(25)r3c23 = (2|5)r1c2' is not valid. But the spoiler 2r2c3 is actually not there. I forgot its elimination, together with 2r2c1 at step 4... A senior moment :(
First post now corrected. Thanks for spotting.
Cenoman
Cenoman
 
Posts: 3006
Joined: 21 November 2016
Location: France


Return to Puzzles