Robert's puzzles 2019-11-24

Post puzzles for others to solve here.

Robert's puzzles 2019-11-24

Postby Mauriès Robert » Sun Nov 24, 2019 8:36 am

Hi,

Here is a rather complicated puzzle to solve. What resolution will be yours ?

31..8...6...519.8.8.....1..27...1.......6..1....8...935...9..31.3.254.....6.....2

puzzle: Show
Image


Good sudoku
Robert
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2019-11-24

Postby SpAce » Mon Nov 25, 2019 12:34 am

Hi Robert,

I have no time to solve it normally right now, so I just tested how easily it would fall to targeted T&E. I smelled weakness in r6c7 so I chose it as my target. (Yes, I knew it was a backdoor.)

Steps 1,2 (normal solving):

Code: Select all
.------------------.------------------.------------------------.
| 3    1    *4579^ | 47    8     27   | *4579^   *2457   6     |
| 467  246   247   | 5     1     9    |  3        8      47    |
| 8    459   4579  | 3467  2347  2367 |  1        2457   4579^ |
:------------------+------------------+------------------------:
| 2    7    *34589 | 349   34    1    | *4568    *456   *458   |
| 49   4589  34589 | 3479  6     2357 |  2478-5   1      4578  |
| 146  456   145   | 8     247   257  |  247-5    9      3     |
:------------------+------------------+------------------------:
| 5    248   2478  | 67    9     678  |  478      3      1     |
| 179  3     178-9 | 2     5     4    |  6789     67     789^  |
| 479  489   6     | 1     37    378  | *45789   *457    2     |
'------------------'------------------'------------------------'

Step 1. 3x4-Fish *: (5)R149\c38[c7b6] => -5 r56c7 (gets rid of one of our targets, 5r6c7)

Step 2. Kite ^: (9)R1C9\b3[r8c3] => -9 r8c3 (helps eliminate 2r6c7 next)

Step 3. T&E (2)r6c7, after basics:

Code: Select all
.-----------------.---------.-------------------.
| 3    1    a59   | 4  8  7 | b59    2      6   |
| 467  246   247  | 5  1  9 |  3     8      47  |
| 8    45    4579 | 6  2  3 |  1     47    c59  |
:-----------------+---------+-------------------:
| 2    7     3    | 9  4  1 |  568   56     58  |
| 9    58   a5[8] | 3  6  2 |  47    1      47  |
| 146  46    14   | 8  7  5 | *2*    9      3   |
:-----------------+---------+-------------------:
| 5    248   248  | 7  9  6 |  48    3      1   |
| 17   3     17-8 | 2  5  4 |  6789  67   c(8)9 |
| 47   9     6    | 1  3  8 |  457   457    2   |
'-----------------'---------'-------------------'

(85)r51c3 = r1c7 - (5=98)r38c9 -> -8 r8c3 -> basics -> contradiction => -2 r6c7

Step 4. T&E (7)r6c7, after basics (n/a):

Code: Select all
.------------------.----------------------.---------------------.
| 3    1     4579  | c47      8     c27   | d459   d2457   6    |
| 467  246   247   |  5       1      9    |  3      8     e47   |
| 8    459   4579  |  3467   b2347   2367 |  1     e2457  e4579 |
:------------------+----------------------+---------------------:
| 2    7     34589 |  349   g(3)4    1    | g4568  g456   f458  |
| 49   4589  34589 |  3479    6      357  |  2      1     f458  |
| 146  456   145   |  8       24     25   | *7*     9      3    |
:------------------+----------------------+---------------------:
| 5    248   2478  |  67      9      678  |  48     3      1    |
| 179  3     178   |  2       5      4    |  689    67     789  |
| 479  489   6     |  1     a[7]-3   378  |  4589   457    2    |
'------------------'----------------------'---------------------'

(7)r9c5 = r3c5 - (7=24)r1c64 - (2|4)r1c78 = (24)b3p869 - r45c9 = (43)r4c875 -> -3 r9c5

-> basics -> contradiction => -7 r6c7; btte

Conclusion. It took two trivial normal steps, and then two T&E steps with basics and one relatively simple chain each. Not pretty or satisfying, but probably quite a bit easier than the normal solving route. At least my little chains avoided the need to use nested T&E.
-SpAce-: Show
Code: Select all
   *             |    |               |    |    *
        *        |=()=|    /  _  \    |=()=|               *
            *    |    |   |-=( )=-|   |    |      *
     *                     \  ¯  /                   *   

"If one is to understand the great mystery, one must study all its aspects, not just the dogmatic narrow view of the Jedi."
User avatar
SpAce
 
Posts: 2671
Joined: 22 May 2017

Re: Robert's puzzles 2019-11-24

Postby Cenoman » Mon Nov 25, 2019 4:21 pm

Hi Robert,
This puzzle is rated S.E. 9.0 Clearly, in the category of "sudoku for masochists" (the expression is not mine ;) )
Or, to put it less trivially, it is in the "grey zone" (not hard enough to be solved by exotic patterns, but not easily solved by advanced techniques)
Mauriès Robert wrote:What resolution will be yours ?

Well, I ask my solver... and even so, it's a hard work to sort the outputs.
Here is a not optimized sequence of chains + krakens in thirteen steps (without net, though)
Hidden Text: Show
PMs shown at significant steps only, chains are not tagged.
Code: Select all
 +-----------------------+-----------------------+------------------------+
 |  3     1      4579    |  47     8      27     |  4579    2457   6      |
 |  467   246    247     |  5      1      9      |  3       8      47     |
 |  8     459    4579    |  3467   2347   2367   |  1       2457   4579   |
 +-----------------------+-----------------------+------------------------+
 |  2     7      34589   |  349    34     1      |  4568    456    458    |
 |  49    4589   34589   |  3479   6      2357   |  24578   1      4578   |
 |  146   456    145     |  8      247    257    |  2457    9      3      |
 +-----------------------+-----------------------+------------------------+
 |  5     248    2478    |  67     9      678    |  478     3      1      |
 |  179   3      1789    |  2      5      4      |  6789    67     789    |
 |  479   489    6       |  1      37     378    |  45789   457    2      |
 +-----------------------+-----------------------+------------------------+

1. (9)r1c3=r1c7-r3c9=(9)r8c9 =>-9r8c3
2. (5)r4c789=r4c3-r1c3=r1c78-r3c9=(5)r45c9 =>-5r56c7

3. Kraken cell (478)r7c7
(4)r7c7
(7)r7c7-(7=6)r8c8-r4c8=(6)r4c7
(8)r7c7-r7c6=(8-3)r9c6=r9c5-(3=4)r4c5
=>-4r4c7

4. Kraken column(4)r346c5 =>-8r5c7
(4-2)r3c5=r6c5-r5c6=(2)r5c7
(4)r4c5-(4=568)r4c789
(4)r6c5-(4=397)b5p124-r5c9=(72)r56c7
=>-8r5c7

5. Kraken row (7)r7c3467
(7)r7c3-r89c1=r2c1-(7=4)r2c9
(7)r7c4-(7=4)r1c4
(7)r7c6-(7=253)r156c6-(3=497)b5p124-(7=4)r1c4
(7)r7c7-r89c8=r13c8-(7=4)r2c9
=>-4r1c78

6. Kraken row (7)r7c3467
(7)r7c3-r89c1=r2c1-(7=4)r2c9
(7)r7c46-(7=34)r49c5
(7)r7c7-r89c8=r13c8-(7=4)r2c9
=>-4r4c9

7. Kraken row (4)r6c12357
(4)r6c123-(4=9)r5c1
(4)r6c5-(4=37)r49c5-(7=49)r59c1
(4)r6c7-(4=6789)b9p1456
=>-9r8c1

8. (6)r4c7=(6-9)r8c7=(9-8)r8c9=(8)r45c9 =>-8r4c7

9. Kraken cell (457)r9c8
(4)r9c8-(4=568)r4c789
(5)r9c8-(5=2478)r5679c7-r8c7=(8)r8c3
(7)r9c8-(7=3)r9c5-r4c5=(39)r4c34
=>-8r4c3; +8r4c9
Code: Select all
 +-----------------------+-----------------------+-----------------------+
 |  3     1      4579    |  47     8      27     |  579    257    6      |
 |  467   246    247     |  5      1      9      |  3      8      47     |
 |  8     459    4579    |  3467   2347   2367   |  1      2457   4579   |
 +-----------------------+-----------------------+-----------------------+
 |  2     7      3459    |  349    34     1      |  56     456    8      |
 |  49    4589   34589   |  3479   6      2357   |  247    1      457    |
 |  146   456    145     |  8      247    257    |  247    9      3      |
 +-----------------------+-----------------------+-----------------------+
 |  5     248    2478    |  67     9      678    |  478    3      1      |
 |  17    3      178     |  2      5      4      |  6789   67     79     |
 |  479   489    6       |  1      37     378    |  4578   457    2      |
 +-----------------------+-----------------------+-----------------------+

10. Kraken row (8)r9c267
(8)r9c2-r5c2=(83)r5c34^-(9)r5c4=(9)r4c4
(8-3)r9c6=r9c5-(3=4)r4c5
(8-5)r9c7=r9c8-(5=274)r1c468
=>-4 r5c4^, -4 r4c4

11. (5)r5c6=(527)r6c567-(4)r6c5=r4c5-(4=65)r4c78 =>-5r5c9; 5 placements
Code: Select all
 +----------------------+---------------------+--------------------+
 |  3     1      5      |  4     8     27     |  9      27    6    |
 |  467   246    247    |  5     1     9      |  3      8     47   |
 |  8     49     479    |  367   237   2367   |  1      247   5    |
 +----------------------+---------------------+--------------------+
 |  2     7      349    |  39    34    1      |  56     56    8    |
 |  49    4589   3489   |  379   6     2357   |  247    1     47   |
 |  146   456    14     |  8     247   257    |  247    9     3    |
 +----------------------+---------------------+--------------------+
 |  5     248    2478   |  67    9     678    |  478    3     1    |
 |  17    3      178    |  2     5     4      |  678    67    9    |
 |  479   489    6      |  1     37    378    |  4578   457   2    |
 +----------------------+---------------------+--------------------+

12.(4=9)r5c1-r45c3=(9-7)r3c3=r2c13-(7=4)r2c9 =>-4r5c9; 10 placements
13. (8)r5c3=r5c2-(8=9)r9c2-r3c2=r3c3^-(9=3)r4c3 =>-9r5c3^,-3r5c3; ste
Cenoman
Cenoman
 
Posts: 3006
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2019-11-24

Postby Mauriès Robert » Wed Nov 27, 2019 6:17 pm

Hi Cenoman, Hi SpAce,

I like your resolutions, one for mixing "reasonable" T&Es, the other for using short chains that build the solution step by step.
TDP can resolve, either in short steps like Cenoman, or by accepting "reasonable" disability like SpAce.
For me, the reasonable term means that the starting choice of the elements of a pair to build tracks (or chains) is above all the search for interaction leading to eliminations or validations, and that if during this process a contradiction appears, then so much the better.
Here is a resolution by TDP due to one of the users of my website.
It is based on the exploitation that can be made of the 4r5b6.

First we consider the track P(4r5c79) = {4r5c79, 9r5c1, ...} that we develop by an extension P(4r5c79).P(9r1) :
P(4r5c79).P(9r1c3) = {4r5c79, 9r5c1, 9r1c3, 9r9c1, ...} -> 5b5=∅ (see puzzle 1) contradiction =>
P(4r5c79) = P(4r5c79).P(9r1c7) = {4r5c79, 9r5c1, 9r1c7, 9r8C9, ..., 8r67c9, 56r4c78, 5r3c9,..., 27r1c78, 4r1c4,... } (see puzzle 2)

puzzle1: Show
Image

puzzle2: Show
Image

We then consider the antitrack P'(4r5c79) = {4r5c1234, ...} that we develop with an extension P'(4r5c79).P(578r5c9) :
P'(4r5c79).P(58r5c9) = {4r5c1234, 27r56c7, 4r4c789, 3r4c5, ..., 4r2c9, ...} (green track on puzzle 3)
P'(4r5c79).P(7r5c9) = {4r5c1234, 4r2c9,459r3c239,...} (purple track on puzzle 3)
=> P'(4r5c79) = {4r5c1234, 4r2c9, 6r3c6, 8r7c6, 6r7c4, 7r9c5, 3r9c6,...} (see puzzle3)

Comparing P(4r5c79) and P'(4r5c79) we deduce from this: r2c9=4, -7r13c3, but as we can develop P(4r5c79) more than we do, we realize that P(4r5c79) is invalid (8b4=∅), which allows us to place all the candidates of P'(4r5c79) as a solution to the puzzle.

puzzle3 et puzzle4: Show
Image
Image

At this stage, since we have understood that P'(4r5c79) is the valid track, it is sufficient to resume its construction from cell r5c9 (see puzzle 5) where all the candidates common to both green and purple branches are candidates of P'(4r5c79), which completes the puzzle.

puzzle5: Show
Image
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France


Return to Puzzles