Another presentation of the rank-0 logic already seen by other players in loops, doubly linked ALS's, Sue de Coq, ...
- Code: Select all
+-----------------------+-----------------------+-----------------------+
| 4 235 9 | 8 7 56 | 236 123 136 |
| 23 235 8 | 569 1 569 | 2367 234 3467 |
| 6 1 7 | 2 34 34 | 9 5 8 |
+-----------------------+-----------------------+-----------------------+
| 5 3479 46 | 1469 8 13469 | 37 139 2 |
| 2379 23479 246 | 1469 5 13469 | 378 1389 137 |
| 389 389 1 | 7 39 2 | 4 6 5 |
+-----------------------+-----------------------+-----------------------+
| *1289 *2489 *24 | *1459 6 *1459 | 238-5 7 3-4 |
| 179-2 479-2 3 | 149-5 249 8 | 256 24 46 |
| *28 6 5 | 3 24 7 | 1 248 9 |
+-----------------------+-----------------------+-----------------------+
(124589)r7c12346, r9c1: six digits in six cells where none can be twice => all are there
Or, presented as a truths/links balance (rank-0 logic)
6 truths: cells r7c12346, r9c1
6 links: 2b7, 8b7, 1r7, 4r7, 9r7, 5b8/r7
=> -2r8c12, -4r7c9, -5r7c7, -5r8c4; ste
Symmetric pigeonhole matrix 6x6
- Code: Select all
r9c1 2 8
r7c1 2 8 1 4 9
r7c2 2 8 4 9
r7c3 2 4
r7c4 1 4 9 5
r7c6 1 4 9 5
--------------------------------------
b7 b7 r7 r7 r7 b8/r7
-2r8c12 -4r8c9 -5r8c4
-5r7c7
Another different solution:
- Code: Select all
+-----------------------+-----------------------+-----------------------+
| 4 235 9 | 8 7 56 | 236 123 136 |
| 23 235 8 | 569 1 569 | 2367 23-4 3467 |
| 6 1 7 | 2 c34# 34 | 9 5 8 |
+-----------------------+-----------------------+-----------------------+
| 5 3479 46 | 1469 8 13469 | 37 139 2 |
| 2379 23479 246 | 1469 5 13469 | 378 1389 137 |
| 389 389 1 | 7 39 2 | 4 6 5 |
+-----------------------+-----------------------+-----------------------+
| e1289 e2489 e24 | 1459 6 1459 | f2358 7 3-4 |
| 1279 2479 3 | 1459 249* 8 | 256 g24* 6-4 |
| d28# 6 5 | 3 b24* 7 | 1 a248* 9 |
+-----------------------+-----------------------+-----------------------+
UR(24)r89c58 using externals
(4)r9c8 = r9c5 - (4)r3c5 == (2)r9c1 - r7c123 = r7c7 - (2=4)r8c8 => -4 r2c8, r78c9; ste