- Code: Select all
*-----------*
|.25|..3|...|
|..3|41.|...|
|.1.|.2.|9.3|
|---+---+---|
|2..|.3.|16.|
|.3.|1..|.58|
|1.4|..8|.3.|
|---+---+---|
|...|397|6..|
|39.|..1|.8.|
|..1|...|39.|
*-----------*
Play/Print this puzzle.
*-----------*
|.25|..3|...|
|..3|41.|...|
|.1.|.2.|9.3|
|---+---+---|
|2..|.3.|16.|
|.3.|1..|.58|
|1.4|..8|.3.|
|---+---+---|
|...|397|6..|
|39.|..1|.8.|
|..1|...|39.|
*-----------*
+---------------------+-----------------------+--------------------+
| 678(49) 2 5 | 67(89) 67(8) 3 | (48) 147 146 |
| 6789 678 3 | 4 1 6(9) | 258 27 256 |
| 7-8(46) 1 78(6) | 7(568) 2 (56) | 9 47 3 |
+---------------------+-----------------------+--------------------+
| 2 578 789 | 579 3 5(49) | 1 6 79(4) |
| 67 3 679 | 1 467 46(29) | 7-4(2) 5 8 |
| 1 567 4 | 25679 567 8 | 27 3 279 |
+---------------------+-----------------------+--------------------+
| 58 48 28 | 3 9 7 | 6 124 1245 |
| 3 9 27(6) | 25(6) 45(6) 1 | 2457 8 2457 |
| 567 467 1 | 2568 4568 (2456) | 3 9 2457 |
+---------------------+-----------------------+--------------------+
+--------------------+------------------+------------------+
| 478-6(9) 2 5 | 789 78 3 | 48 147 1(6) |
| 678(9) 678 3 | 4 1 (69) | 258 27 25(6) |
| 467 1 678 | 578 2 56 | 9 47 3 |
+--------------------+------------------+------------------+
| 2 578 78 | 579 3 59 | 1 6 4 |
| 67 3 9 | 1 467 24 | 27 5 8 |
| 1 567 4 | 2567 567 8 | 27 3 9 |
+--------------------+------------------+------------------+
| 58 48 28 | 3 9 7 | 6 124 125 |
| 3 9 267 | 256 456 1 | 2457 8 257 |
| 567 467 1 | 2568 4568 24 | 3 9 257 |
+--------------------+------------------+------------------+
champagne wrote:I had a look to these 2 puzzles.
A small remark, they are not minimal, but no doubt, they are valid.
A classical rating (here skfr) rates the second one higher than the first (ED 8.3 against 7.2), but we are still far from the so called "hard puzzles".
ixsetf wrote:As for the difficulty, I know I have a long way to go before I can produce anything near as difficult as Arto Inkala or Escargot. I do wish to make puzzles like them in the future, but there are some things limiting this. Mainly they are my limited experience with constructing puzzles, and a mostly by-hand production. While constructing these I did check a solver to see if removals produced contradictions, but otherwise I used no code.
champagne wrote:My remark about the difficulty is not so important.
Many players just stop when the puzzles require long solutions, so, very often, difficult puzzles are of poor value for them.
On top of it, the rating usually evaluates the most difficult step. A skill player can cope with pleasure with puzzles rated very very high if they have a quick solution using special rules but will reject puzzles requiring many steps (as Escargot so far).
Commercial puzzles have normally much smaller ratings.
after Basics
+-----------------------------------------------------------------------+
| 46789 2 5 | 6789 678 3 | 48 147 146 |
| 6789 678 3 | 4 1 69 | 258 27 256 |
| 4678 1 678 | 5678 2 56 | 9 47 3 |
|-----------------------+-----------------------+-----------------------|
| 2 578 789 | 579 3 459 | 1 6 479 |
| 67 3 679 | 1 467 2469 | 247 5 8 |
| 1 567 4 | 25679 567 8 | 27 3 279 |
|-----------------------+-----------------------+-----------------------|
| 58 48 28 | 3 9 7 | 6 124 1245 |
| 3 9 267 | 256 456 1 | 2457 8 2457 |
| 567 467 1 | 2568 4568 2456 | 3 9 2457 |
+-----------------------------------------------------------------------+
# 102 eliminations remain
-6r2c12 and Kraken Column [c6] for <6>:
6r2c6
||
6r3c6 - r3c13 = ( 6-9)r1 c1 = r1c4 - (9=6)r2c6 - 6r3c6 discontinuous loop
||
6r9c6 - r9c12 = r8c3 - r3c3 = hp(46-9)r13c1 = r1c4 - (9=6)r2c6 - 6r9c6 discontinuous loop
||
6r5c6 - (6=954)r234c6 - r4c9 = (4-2)r5c7 = (2-6)r5c6 discontinuous loop
Bottom Line: 6r2c12 = 6r2c6 => -6 r2c9
after additional Basics
+-----------------------------------------------------------------------+
| 489 2 5 | 789 78 3 | 48 1 6 |
| 89 67 3 | 4 1 69 | 258 27 25 |
| 48 1 67 | 568 2 56 | 9 47 3 |
|-----------------------+-----------------------+-----------------------|
| 2 578 789 | 579 3 459 | 1 6 479 |
| 67 3 679 | 1 467 2469 | 247 5 8 |
| 1 567 4 | 25679 567 8 | 27 3 279 |
|-----------------------+-----------------------+-----------------------|
| 5 48 28 | 3 9 7 | 6 24 1 |
| 3 9 267 | 256 456 1 | 2457 8 2457 |
| 67 467 1 | 2568 4568 2456 | 3 9 2457 |
+-----------------------------------------------------------------------+
# 80 eliminations remain
(7=6)r2c2 - (6=9)r2c6 - (9=8)r2c1 - (8=4)r3c1 - (4=7)r3c8 => -7 r2c8,r3c3
Singles
An equivalent presentation :daj95376 wrote:
- Code: Select all
after Basics
+-----------------------------------------------------------------------+
| 46789 2 5 | 6789 678 3 | 48 147 146 |
| 6789 678 3 | 4 1 69 | 258 27 256 |
| 4678 1 678 | 5678 2 56 | 9 47 3 |
|-----------------------+-----------------------+-----------------------|
| 2 578 789 | 579 3 459 | 1 6 479 |
| 67 3 679 | 1 467 2469 | 247 5 8 |
| 1 567 4 | 25679 567 8 | 27 3 279 |
|-----------------------+-----------------------+-----------------------|
| 58 48 28 | 3 9 7 | 6 124 1245 |
| 3 9 267 | 256 456 1 | 2457 8 2457 |
| 567 467 1 | 2568 4568 2456 | 3 9 2457 |
+-----------------------------------------------------------------------+
# 102 eliminations remain
-6r2c12 and Kraken Column [c6] for <6>:
6r2c6
||
6r3c6 - r3c13 = ( 6-9)r1 c1 = r1c4 - (9=6)r2c6 - 6r3c6 discontinuous loop
||
6r9c6 - r9c12 = r8c3 - r3c3 = hp(46-9)r13c1 = r1c4 - (9=6)r2c6 - 6r9c6 discontinuous loop
||
|| (6=9)r2c6
|| / \
6r5c6 - - (59=4)r4c6 - r4c9 = (4-2)r5c7 = (2-6)r5c6 discontinuous loop
\ /
(6=5)r3c6
Bottom Line: 6r2c12 = 6r2c6 => -6 r2c9
+-----------------------+------------------------+-------------------+
| 78(469) 2 5 | 678(9) 678 3 | 48 147 146 |
| 789(6) 78(6) 3 | 4 1 (69) | 258 27 25-6 |
| 78(46) 1 78(6) | 5678 2 (56) | 9 47 3 |
+-----------------------+------------------------+-------------------+
| 2 578 789 | 579 3 (459) | 1 6 79(4) |
| 67 3 679 | 1 467 4(2)-69 | 7(24) 5 8 |
| 1 567 4 | 25679 567 8 | 27 3 279 |
+-----------------------+------------------------+-------------------+
| 58 48 28 | 3 9 7 | 6 124 1245 |
| 3 9 27(6) | 256 456 1 | 2457 8 2457 |
| 57(6) 47(6) 1 | 2568 4568 245(6) | 3 9 2457 |
+-----------------------+------------------------+-------------------+
999_Springs wrote:solved this entirely by hand, so solution path may be a little messy, but here goes.
9r4c9(-9-r4c6)=4=r5c7(-4-r1c7-8-r1c45=3=r3c4-8-r3c3)=2=r5c6(-6)=9=r2c6(-6)-9-r2c1=9=r1c1=4=r3c1-4-r3c8-7-r3c3-6-(r3c6)r8c3=6=r8c34-6-r9c6 => r4c9=/=9 (edit: it turns out that this chain and the single after it are totally unnecessary, and after following the rest of these steps, all i needed was a naked pair 56 in r6 followed by a three strong links in 6 in b1 c9 r8 => r1c4=/=6)
....
9r4c9
4r4c9=4r5c7
4r1c7=8r1c7
8r1c45=8r3c4
2r5c7==============2r5c6
9r4c6====================9r5c6=9r2c6
9r1c4=9r1c1
4r1c1=4r3c1
4r3c7=7r3c8
8r3c3=========================7r3c3=6r3c3
6r3c6=5r3c6
6r8c3=======6r8c34
6r5c6=6r2c6=========================6r3c6=6r9c6
*******************************************************************************************************
*** SudoRules 20.0.s based on CSP-Rules 2.0.s, using CLIPS 6.30-r152, config = gW-S
*******************************************************************************************************
.25..3.....341.....1..2.9.32...3.16..3.1...581.4..8.3....3976..39...1.8...1...39.
33 givens, 162 candidates
whip[1]: b8n8{r9c5 .} ==> r9c2 ≠ 8, r9c1 ≠ 8
whip[1]: c1n5{r9 .} ==> r9c2 ≠ 5
whip[1]: c2n4{r9 .} ==> r9c1 ≠ 4
whip[1]: c1n5{r7 .} ==> r7c2 ≠ 5
whip[1]: c2n4{r7 .} ==> r7c1 ≠ 4
whip[1]: c3n9{r5 .} ==> r5c1 ≠ 9
whip[1]: c8n7{r2 .} ==> r2c9 ≠ 7, r2c7 ≠ 7, r1c9 ≠ 7, r1c7 ≠ 7
whip[1]: b3n5{r2c9 .} ==> r2c6 ≠ 5
biv-chain[3]: b1n9{r1c1 r2c1} - r2c6{n9 n6} - c9n6{r2 r1} ==> r1c1 ≠ 6
whip[3]: b1n4{r3c1 r1c1} - r1c7{n4 n8} - r2n8{c7 .} ==> r3c1 ≠ 8
whip[3]: b1n4{r1c1 r3c1} - r3c8{n4 n7} - r2n7{c8 .} ==> r1c1 ≠ 7
whip[3]: r3c8{n7 n4} - r1c7{n4 n8} - b2n8{r1c4 .} ==> r3c4 ≠ 7
whip[1]: b2n7{r1c5 .} ==> r1c8 ≠ 7
whip[4]: c5n8{r9 r1} - r1c7{n8 n4} - c8n4{r1 r7} - r8n4{c7 .} ==> r9c5 ≠ 4
biv-chain[2]: r4n4{c9 c6} - b8n4{r9c6 r8c5} ==> r8c9 ≠ 4
whip[4]: c6n2{r5 r9} - b8n4{r9c6 r8c5} - r5n4{c5 c7} - r5n2{c7 .} ==> r5c6 ≠ 9
hidden-single-in-a-row ==> r5c3 = 9
biv-chain[4]: c3n6{r3 r8} - c3n2{r8 r7} - c8n2{r7 r2} - b3n7{r2c8 r3c8} ==> r3c3 ≠ 7
hidden-pairs-in-a-row: r3{n4 n7}{c1 c8} ==> r3c1 ≠ 6
whip[2]: b9n7{r9c9 r8c7} - c3n7{r8 .} ==> r4c9 ≠ 7
biv-chain[3]: r5c1{n6 n7} - c3n7{r4 r8} - c3n6{r8 r3} ==> r2c1 ≠ 6
whip[4]: r3c6{n5 n6} - r3c3{n6 n8} - c1n8{r1 r7} - b7n5{r7c1 .} ==> r9c6 ≠ 5
whip[4]: b8n5{r9c4 r8c5} - r8n4{c5 c7} - r1c7{n4 n8} - b2n8{r1c4 .} ==> r3c4 ≠ 5
hidden-single-in-a-block ==> r3c6 = 5
naked-pairs-in-a-row: r4{c6 c9}{n4 n9} ==> r4c4 ≠ 9
whip[2]: b7n6{r9c2 r8c3} - r3n6{c3 .} ==> r9c4 ≠ 6
biv-chain[3]: r2c6{n6 n9} - b5n9{r4c6 r6c4} - b5n2{r6c4 r5c6} ==> r5c6 ≠ 6
biv-chain[3]: r3c4{n8 n6} - c6n6{r2 r9} - r9c5{n6 n8} ==> r9c4 ≠ 8
hidden-single-in-a-block ==> r9c5 = 8
biv-chain[3]: r4c4{n7 n5} - c5n5{r6 r8} - c5n4{r8 r5} ==> r5c5 ≠ 7
biv-chain[2]: r5n7{c7 c1} - c3n7{r4 r8} ==> r8c7 ≠ 7
whip[1]: b9n7{r9c9 .} ==> r6c9 ≠ 7
biv-chain[3]: b8n4{r9c6 r8c5} - r5c5{n4 n6} - c1n6{r5 r9} ==> r9c6 ≠ 6
singles to the end
825973416
973416825
416825973
258739164
739164258
164258739
582397641
397641582
641582397