Jasper32 wrote:Below is a puzzle that I could only go so far on and then I was stumped.
is there somebody in this group who is able to solve this puzzle without resorting to Bowman's Bingo? I couldn't solve it but I am still trying do develop my skills at Sudoku. I would assume that this is a difficult puzzle.
First, the puzzle without the PMs and without the 2 extra values (r9c9=2 and r5c6=2) is:
- Code: Select all
.....5...
6.....5.1
.5.1.9.2.
..5.7.2..
3.......4
..4.1.7..
.3.2.6.9.
4.2.....3
...8.....
Here is another solution with no Bowman Bingo (= T&E), no ALS, no use of subsets in chains.
The longest chain used has length 5 (5 cells, 10 candidates).
nrc(z)t chains are defined here:
http://forum.enjoysudoku.com/viewtopic.php?t=5591***** SudoRules version 13 *****
hidden-single-in-a-row ==> r9c9 = 2
row r2 interaction-with-block b1 ==> r1c3 <> 9, r1c2 <> 9, r1c1 <> 9
column c7 interaction-with-block b3 ==> r2c8 <> 3, r1c8 <> 3
x-wing-in-rows n4{r3 r7}{c5 c7} ==> r9c7 <> 4, r9c5 <> 4, r2c5 <> 4, r1c7 <> 4, r1c5 <> 4
nrc3-chain n4{r9c8 r9c6} - {n4 n5}r7c5 - n5{r7c1 r9c1} ==> r9c8 <> 5
nrct3-chain n1{r8c6 r9c6} - {n1 n6}r9c7 - n6{r9c3 r8c2} ==> r8c2 <> 1
nrct3-chain n3{r1c7 r3c7} - n4{r3c7 r3c5} - n6{r3c5 r3c9} ==> r1c7 <> 6
nrc4-chain n3{r1c7 r3c7} - n4{r3c7 r7c7} - n4{r7c5 r9c6} - n3{r9c6 r9c5} ==> r1c5 <> 3
nrct4-chain n5{r8c8 r7c9} - {n5 n4}r7c5 - n4{r9c6 r9c8} - n7{r9c8 r8c8} ==> r8c8 <> 8
nrct3-chain {n1 n6}r9c7 - n6{r9c3 r8c2} - n8{r8c2 r8c7} ==> r8c7 <> 1
nrct4-chain n1{r8c6 r8c8} - n5{r8c8 r7c9} - n7{r7c9 r9c8} - n4{r9c8 r9c6} ==> r9c6 <> 1
hidden-single-in-a-block ==> r8c6 = 1
nrct4-chain n5{r8c8 r7c9} - {n5 n4}r7c5 - n4{r9c6 r9c8} - n7{r9c8 r8c8} ==> r8c8 <> 6
hidden-pairs-in-a-row {n6 n8}r8{c2 c7} ==> r8c2 <> 9
row r8 interaction-with-block b8 ==> r9c5 <> 9
hidden-pairs-in-a-row {n6 n8}r8{c2 c7} ==> r8c2 <> 7
nrc2-chain n6{r8c7 r8c2} - n6{r9c3 r5c3} ==> r5c7 <> 6
nrc2-chain n7{r8c8 r8c4} - n7{r9c6 r2c6} ==> r2c8 <> 7
nrc3-chain {n8 n4}r2c8 - n4{r9c8 r9c6} - n7{r9c6 r2c6} ==> r2c6 <> 8
column c6 interaction-with-block b5 ==> r5c5 <> 8
nrc3-chain {n8 n6}r8c2 - n6{r9c3 r5c3} - n7{r5c3 r5c2} ==> r5c2 <> 8
nrct4-chain n9{r1c9 r1c7} - n3{r1c7 r3c7} - n4{r3c7 r3c5} - n6{r3c5 r3c9} ==> r1c9 <> 6
nrc5-chain n9{r8c5 r5c5} - n9{r5c7 r1c7} - n3{r1c7 r3c7} - n4{r3c7 r3c5} - {n4 n5}r7c5 ==> r8c5 <> 5
naked-single ==> r8c5 = 9
nrc2-chain n5{r6c9 r7c9} - n5{r8c8 r8c4} ==> r6c4 <> 5
row r6 interaction-with-block b6 ==> r5c8 <> 5
nrczt4-chain n2{r1c5 r2c6} - n7{r2c6 r9c6} - {n7 n5}r8c4 - n5{r9c5 r5c5} ==> r5c5 <> 2
column c5 interaction-with-block b2 ==> r2c6 <> 2
nrc4-chain n7{r9c6 r8c4} - n5{r8c4 r5c4} - {n5 n6}r5c5 - n6{r5c3 r9c3} ==> r9c3 <> 7
nrc4-chain n4{r9c8 r9c6} - {n4 n5}r7c5 - {n5 n6}r5c5 - n6{r5c3 r9c3} ==> r9c8 <> 6
block b9 interaction-with-column c7 ==> r3c7 <> 6
nrc3-chain n6{r3c9 r3c5} - n4{r3c5 r3c7} - {n4 n8}r2c8 ==> r3c9 <> 8
nrc4-chain {n1 n6}r9c7 - n6{r9c3 r5c3} - {n6 n5}r5c5 - n5{r9c5 r9c1} ==> r9c1 <> 1
nrczt4-chain {n8 n4}r2c8 - n4{r3c7 r3c5} - n8{r3c5 r3c7} - n8{r8c7 r8c2} ==> r2c2 <> 8
nrczt4-chain n3{r1c7 r3c7} - n4{r3c7 r3c5} - {n4 n7}r2c6 - {n7 n3}r2c4 ==> r1c4 <> 3
nrc5-chain {n1 n6}r9c7 - n6{r9c3 r5c3} - {n6 n5}r5c5 - {n5 n4}r7c5 - n4{r9c6 r9c8} ==> r9c8 <> 1
column c8 interaction-with-block b6 ==> r5c7 <> 1
nrct3-chain n9{r1c9 r1c7} - {n9 n8}r5c7 - n8{r8c7 r7c9} ==> r1c9 <> 8
nrct3-chain {n9 n8}r5c7 - n8{r6c9 r7c9} - n5{r7c9 r6c9} ==> r6c9 <> 9
nrct4-chain {n9 n8}r5c7 - n8{r8c7 r7c9} - n5{r7c9 r8c8} - n5{r8c4 r5c4} ==> r5c4 <> 9
naked-pairs-in-a-block {n5 n6}{r5c4 r5c5} ==> r6c4 <> 6, r4c4 <> 6
block b5 interaction-with-row r5 ==> r5c8 <> 6, r5c3 <> 6
naked and hidden singles ==> r9c3 = 6, r8c2 = 8, r8c7 = 6, r9c7 = 1
block b5 interaction-with-row r5 ==> r5c2 <> 6
nrc3-chain n7{r2c6 r9c6} - {n7 n9}r9c2 - n9{r2c2 r2c3} ==> r2c3 <> 7
nrc3-chain n7{r5c3 r5c2} - {n7 n9}r9c2 - n9{r2c2 r2c3} ==> r5c3 <> 9
hidden-single-in-a-column ==> r2c3 = 9
row r2 interaction-with-block b2 ==> r3c5 <> 3
nrct3-chain {n7 n8}r3c1 - n8{r6c1 r5c3} - n7{r5c3 r5c2} ==> r2c2 <> 7
row r2 interaction-with-block b2 ==> r1c4 <> 7
nrct3-chain {n7 n8}r3c1 - n8{r6c1 r5c3} - n7{r5c3 r5c2} ==> r1c2 <> 7
xy4-chain {n9 n8}r5c7 - {n8 n4}r7c7 - {n4 n7}r9c8 - {n7 n9}r9c2 ==> r5c2 <> 9
hidden singles ==> r5c7 = 9, r1c9 = 9
hidden-pairs-in-a-block {n6 n7}{r1c8 r3c9} ==> r1c8 <> 8, r1c8 <> 4
xy3-chain {n8 n6}r4c9 - {n6 n7}r3c9 - {n7 n8}r3c1 ==> r4c1 <> 8
nrc3-chain {n1 n9}r4c1 - n9{r9c1 r9c2} - n7{r9c2 r5c2} ==> r5c2 <> 1
nrc3-chain {n8 n7}r3c1 - n7{r3c9 r7c9} - n8{r7c9 r7c7} ==> r3c7 <> 8
xyzt4-chain {n1 n9}r4c1 - {n9 n6}r4c2 - {n6 n8}r4c9 - {n8 n1}r5c8 ==> r5c3 <> 1
hidden-single-in-a-row ==> r5c8 = 1
nrc4-chain n4{r2c2 r1c2} - {n4 n6}r1c4 - {n6 n7}r1c8 - {n7 n4}r9c8 ==> r2c8 <> 4
naked and hidden singles ==> r2c8 = 8, r1c7 = 3, r3c7 = 4, r7c7 = 8, r9c8 = 4, r7c5 = 4, r3c3 = 3
nrczt2-chain n7{r3c1 r3c9} - n7{r7c9 r7c3} ==> r9c1 <> 7
nrc3-chain n7{r2c4 r8c4} - n5{r8c4 r9c5} - n3{r9c5 r2c5} ==> r2c4 <> 3
column c4 interaction-with-block b5 ==> r6c6 <> 3, r4c6 <> 3
naked-pairs-in-a-block {n2 n8}{r5c6 r6c6} ==> r4c6 <> 8
naked and hidden singles ==> r4c6 = 4, r4c9 = 8
nrc4-chain {n6 n7}r1c8 - n7{r8c8 r8c4} - n5{r8c4 r9c5} - {n5 n6}r5c5 ==> r1c5 <> 6
nrc3-chain n8{r3c1 r3c5} - {n8 n2}r1c5 - n2{r1c1 r6c1} ==> r6c1 <> 8
... (naked and hidden singles)...
217485369
649723581
853169427
165974238
378652914
924318756
731246895
482591673
596837142
Notice that in this solution r5c6=2 is obtained only in the final NS and HS steps.