Re: Robert's puzzles 2024-12-23

Post puzzles for others to solve here.

Re: Robert's puzzles 2024-12-23

Postby Mauriès Robert » Mon Dec 23, 2024 7:25 pm

Hi all,
What original resolution will you give to this puzzle:

.......2...35.7.4.5.7.1.........486.6...5...2.386.........2.6.7.7.3.12...9.......

puzzle: Show
Image

Happy Christmas holidays.
Robert
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2024-12-23

Postby eleven » Wed Dec 25, 2024 4:11 pm

This one should be original:
Code: Select all
+-----------------------+-----------------------+-----------------------+
|  1489   1468   149    |  489    34689  3689   |  7      2      5      |
|  289    268    3      |  5      689    7      |  19     4      1689   |
|  5      468    7      |  2489   1      2689   |  39     389    3689   |
+-----------------------+-----------------------+-----------------------+
|  1279   125    1259   |  1279  a379    4      |  8      6      139    |
|  6      14     149    |  1789   5     a389    |  1349   1379   2      |
|  1479-2 3      8      |  6     a79    a29     |  1459   1579   149    |
+-----------------------+-----------------------+-----------------------+
| c1348  c1458  c145    |  489    2     b589    |  6      13589  7      |
| c48     7      456    |  3      4689   1      |  2      589    489    |
| c12348  9      12456  |  478    4678   568    |  1345   1358   1348   |
+-----------------------+-----------------------+-----------------------+

(2=9738)b5p9826 - (8|9=5)r7c6 - (5=13482)b7p12347 => -2r6c1
Code: Select all
+-----------------------+-----------------------+-----------------------+
|  189    68     19     |  489    34689  3689   |  7      2      5      |
|  289   #68+2   3      |  5     #689    7      | #19     4     #1689   |
|  5      4      7      |  2      1      689    | #39     389    3689   |
+-----------------------+-----------------------+-----------------------+
|  79+2  *25    *259    |  1     #379    4      |  8      6     #39     |
|  6      1      49     |  789    5      389    | #349    379    2      |
|  479    3      8      |  6     #79     2      |  1459   1579  #149    |
+-----------------------+-----------------------+-----------------------+
|  1348   58     145    |  489    2      589    |  6      13589  7      |
| #48     7     #46+5   |  3     #4689   1      |  2      589   #489    |
|  12348  9      12456  |  478    4678   568    |  1345   1358   1348   |
+-----------------------+-----------------------+-----------------------+

Impossible pattern, r4c3 cannot be 5 (forcing 2r4c2) => -5r4c3, stte
Hidden Text: Show
Code: Select all
                           9           39           9   
 *--------------------------------------------------------*
 | .     .    .    | .    .      .   |  .    .      .     |
 | .     68   .    | .    689    .   | a19   .      1689  |- 168
 | .     .    .    | .    .      .   | c39   .      .     |
 |-----------------+-----------------+--------------------|
 | .     .    .    | .    379    .   |  .    .      39    |- 3
 | .     .    .    | .    .      .   | b349  .      .     |4
 | .     .    .    | .    79     .   |  .    .     a149   |- 1
 |-----------------+-----------------+--------------------|
 | .     .    .    | .    .      .   |  .    .      .     |
 | 48    .    46   | .    4689   .   |  .    .      489   |- 468
 | .     .    .    | .    .      .   |  .    .      .     |
 *--------------------------------------------------------*

7 digits 1346789, 14 cells
max. possible: 1 2x 3 2x 4 2x 6 2x 7 1x 8 2x 9 3x
-> all must be there max. times
=> 1r6c9 & r2c7, 4r5c7, 3r3c7 => 9 can't be there 3 times in 2 columns
[edited diagram to make it clearer]
eleven
 
Posts: 3186
Joined: 10 February 2008

Re: Robert's puzzles 2024-12-23

Postby Cenoman » Wed Dec 25, 2024 10:05 pm

Nothing original, just a solution :(
Code: Select all
 +-------------------------+------------------------+------------------------+
 |  1489    1468   149     |  489    34689   3689   |  7      2       5      |
 |  289     268    3       |  5      689     7      |  19     4       1689   |
 |  5       468    7       |  2489   1       2689   |  39     389     3689   |
 +-------------------------+------------------------+------------------------+
 |  1279    125    1259    |  1279   379     4      |  8      6       139    |
 |  6       14     149     |  1789   5       389    |  1349   1379    2      |
 |  12479   3      8       |  6      79      29     |  1459   1579    149    |
 +-------------------------+------------------------+------------------------+
 |  1348    1458   145     |  489    2       589    |  6      13589   7      |
 |  48      7      456     |  3      4689    1      |  2      589     489    |
 |  12348   9      12456   |  478    4678    568    |  1345   1358    1348   |
 +-------------------------+------------------------+------------------------+

1. Death Blossom, stem (589)r7c6
(5)r7c6-(5=13482)b7p12347
(8)r7c6-(8=3792)b5p2689
(9)r7c6-(9=2)r6c6
=>-2r6c1; 5 placements

Code: Select all
 +------------------------+-----------------------+------------------------+
 |  189     68    19      |  489   34689   3689   |  7      2       5      |
 |  289     268   3       |  5     689     7      |  19     4       1689   |
 |  5       4     7       |  2     1       689    |  39     389     3689   |
 +------------------------+-----------------------+------------------------+
 |  279     25    259     |  1     379     4      |  8      6       39     |
 |  6       1     49      |  789   5       389    |  349    37-9    2      |
 |  479     3     8       |  6     79      2      |  1459   157-9   149    |
 +------------------------+-----------------------+------------------------+
 |  1348    58    145     |  489   2       589    |  6      1358-9  7      |
 |  48      7     456     |  3     4689    1      |  2      589     489    |
 |  12348   9     12456   |  478   4678    568    |  1345   1358    1348   |
 +------------------------+-----------------------+------------------------+

2. (9=3)r4c9 - (3=49)r5c37 => -9 r5c8

3. Kraken row (9)r2c1579
(9)r2c1 - (9=1)r1c3 - (1=4589)r7c2346
(9)r2c5 - r8c5 = (9)r8c89
(9)r2c79 - (9=3)r3c7 - (3=49)r5c37 - r5c46 = r46c5 - r8c5 = (9)r8c89
=> -9 r7c8

4. Kraken row (9)r2c1579
(9)r2c1 - (9=18)r1c13 - (8=4)r8c1 - r7c13 = r7c4 - r1c4 = (43)r14c5 - (3=9)r4c9* - r56c7 = (9)r23c7^
(9)r2c5 - r46c5 = r5c46 - (9=43)r5c37 - (3=9)r3c7,r4c9*^
(9-1)r2c7^ = r2c9 - r6c9 = (15)r6c78*
(9)r2c9^ - r23c7 = r56c7*
=> -9 r3c8^, r6c8*; ste
Cenoman
Cenoman
 
Posts: 3020
Joined: 21 November 2016
Location: France

Re: Robert's puzzles 2024-12-23

Postby Mauriès Robert » Thu Dec 26, 2024 9:20 am

Hi eleven and Cenoman,
Originality lies in the different resolution proposals that we make, so yours are original. Thank you for your proposals.
For my part, the originality (I hope) is in the use of two strongly linked backdoors. Here's how.
The first part of the resolution is common to yours by the elimination of 2r6C1:
(-2r6c6)->9r6c6->2r4c4->1r5c4->8r5c6->5r7c6->56r89c3->2r9c1->... => -2r6c1 =>r6c6=2 + 5 placements
Hidden Text: Show
Image

Next, I show that 2r2c2 and 9r2c5 are strongly related.
For this I use an internal anti-track to the main anti-track:
(-2r2c2)->2r2c1->2r4c2->5r7c2->5r8c8->5r6c7->[(-9r2c5)->68r2c25->19r2c79->3r3c7->49r5c37->9r46c5->... =>" -9r8c5"]->9r8c9->3r4c9->9r2c7->1r2c9->1r6c8->... impossibility on c8 => 2r2c2 and 9r2c5 strongly linked (and it turns out that these candidates are respectively backdoors).
(*) the notation "-9r8c5" does not mean here that this candidate is eliminated from the puzzle, but only that it is not a candidate for the main anti-track.
Hidden Text: Show
On the puzzle the main anti-track is drawn in blue and the internal anti-track is drawn in yellow
Image

From then on, I can easily eliminate the 2r1c1 like this:
(-2L2C2)->9r2c5->7r6c5->3r4c5->9r4c9->9r8c8->5r8c3->6r9c3->2r9c1->... => -2r1c1 => r2c2=2, end
Hidden Text: Show
Image

A bit complicated!... but it was an opportunity to talk about an internal anti-track to an anti-track, a pattern similar to that of a gSpB-Braid (I believe ?).
Robert
Last edited by Mauriès Robert on Fri Dec 27, 2024 3:59 pm, edited 1 time in total.
Mauriès Robert
 
Posts: 613
Joined: 07 November 2019
Location: France

Re: Robert's puzzles 2024-12-23

Postby DEFISE » Thu Dec 26, 2024 1:50 pm

Nothing original except perhaps a certain uniformity :

Single(s): 7r1c7, 5r1c9
Box/Line: 1r1b1 => -1r2c1 -1r2c2
Box/Line: 3r1b2 => -3r3c6
Box/Line: 2r2b1 => -2r3c2
Box/Line: 6c2b1 => -6r1c3
g-whip[7]: b5n2{r6c6 r4c4}- c3n2{r4 r9}- c3n6{r9 r8}- b7n5{r8c3 r7c23}- r7c6{n5 n8}- r5n8{c6 c4}- c4n1{r5 .} => -9r6c6
Single(s): 2r6c6, 2r3c4, 4r3c2, 1r5c2, 1r4c4
whip[8]: r8c1{n8 n4}- r7n4{c1 c4}- r1c4{n4 n9}- r1n4{c4 c5}- c5n3{r1 r4}- r4c9{n3 n9}- c3n9{r4 r5}- c3n4{r5 .} => -8r1c1
Naked pairs: 19r1c13 => -9r1c4 -9r1c5 -9r1c6
Box/Line: 9r1b1 => -9r2c1
whip[8]: r7c2{n5 n8}- r8c1{n8 n4}- r7n4{c1 c4}- c4n9{r7 r5}- r5c3{n9 n4}- r5c7{n4 n3}- r3c7{n3 n9}- c6n9{r3 .} => -5r7c6
Single(s): 5r9c6, 5r6c7
Box/Line: 6c6b2 => -6r1c5 -6r2c5
g-whip[8]: r4c9{n9 n3}- r5n3{c7 c6}- r5n8{c6 c4}- b5n9{r5c4 r46c5}- r2n9{c5 c7}- r5c7{n9 n4}- r6c9{n4 n1}- r2n1{c9 .} => -9r8c9
Box/Line: 9b9c8 => -9r3c8 -9r5c8 -9r6c8
Naked pairs: 48r8c19 => -4r8c3 -4r8c5 -8r8c5 -8r8c8
Hidden pairs: 59c8r78 => -1r7c8 -3r7c8 -8r7c8
STTE
DEFISE
 
Posts: 291
Joined: 16 April 2020
Location: France

Re: Robert's puzzles 2024-12-23

Postby DEFISE » Thu Dec 26, 2024 2:16 pm

Mauriès Robert wrote:A bit complicated!... but it was an opportunity to talk about an internal anti-track to an anti-track, a pattern similar to that of a gSpB-Braid (I believe ?).
Robert


Hi Robert,
I don't think so, but as I don't want to have big debates in English, I prefer to explain it to you by email in French.
DEFISE
 
Posts: 291
Joined: 16 April 2020
Location: France


Return to Puzzles