Rank 0 challenge 2

Post puzzles for others to solve here.

Rank 0 challenge 2

Postby yzfwsf » Sun Dec 10, 2023 10:10 am

Code: Select all
,--------------------,--------------------,---------------------,
| 4      1267   237  | 12567  8     13567 | 16     126    9     |
| 13678  12678  2378 | 9      136   13467 | 1468   5      24678 |
| 16789  16789  5    | 1267   16    1467  | 3      1246   24678 |
:--------------------+--------------------+---------------------:
| 17     1457   6    | 3      9     157   | 2      8      45    |
| 2      579    379  | 4      567   8     | 569    369    1     |
| 1389   14589  3489 | 156    2     156   | 4569   7      3456  |
:--------------------+--------------------+---------------------:
| 5      24679  2479 | 8      1367  13679 | 1469   12469  236   |
| 689    3      289  | 156    4     169   | 7      1269   2568  |
| 6789   46789  1    | 567    3567  2     | 45689  3469   34568 |
'--------------------'--------------------'---------------------'

My solver found a 17 elimination Blossom Loop on the current PM.
yzfwsf
 
Posts: 923
Joined: 16 April 2019

Re: Rank 0 challenge 2

Postby marek stefanik » Tue Dec 12, 2023 3:47 pm

I'm not seeing this one, the best I can do has a size 4 rank1 area:
Code: Select all
                \3            5     5                     \45
,--------------------,--------------------,---------------------,
| 4      1267   237  | 12567  8    A3567–1| 16     126    9     |  3
| 13678  12678  278–3| 9    A#136   13467 | 1468   5      2678–4|
| 16789  16789  5    | 1267 A#16    1467  | 3      1246   2678–4|
:--------------------+--------------------+---------------------:
| 17     1457   6    | 3      9    A157   | 2      8     #45    |
| 2      579    379  | 4     A567   8     | 569    369    1     |  36
| 1389   14589  489–3| 156    2    A156   | 459–6  7     #3456  |  \36b6
:--------------------+--------------------+---------------------:
| 5      24679  2479 | 8      1367  13679 | 1469   12469  236   |
| 689    3      289  | 156    4     169   | 7      1269   2568  |  5
| 6789   46789  1    | 67–5   3567  2     | 45689  3469   368–45|  \5b8
'--------------------'--------------------'---------------------'
4-link A = 135r1c6 136r2c5 16r3c5 56r5c5 5r46c6 = (13b2 5c6b5 6c5 + r1c6 r235c5)/2
10 truths: 3r1 36r5 5r8 5c56 + r23c5 r46c9
10 links: 3c3 36b6 5b8 45c9 A[4]

Xsudo input: Show
10 Truths = {3R15 5R8 6R5 5C56 23N5 46N9}
12 Links = {3c3 6c5 45c9 5n5 1n6 1b2 3b26 5b58 6b6}

Marek
marek stefanik
 
Posts: 369
Joined: 05 May 2021

Re: Rank 0 challenge 2

Postby yzfwsf » Wed Dec 13, 2023 2:53 pm

Three days have passed, and probably no one has provided a solution. I posted the solution found by the program.
Image
Cell Type Blossom Loop: 3456r6c9 => b2p137 <> 1, r26c3 <> 3, r239c9,r6c7 <> 4, r9c49 <> 5, r1c46,r3c4,r6c7 <> 6, r17c6 <> 7
4r6c9 - (4=5)r4c9 - r8c9 = r8c4 - r9c5 = (5-6)r5c5 = r5c78 - 6r6c9
3r6c9 - r6c1 = r2c1 - (3=1467)b2p5689 - r4c6 = 7r5c5
yzfwsf
 
Posts: 923
Joined: 16 April 2019

Re: Rank 0 challenge 2

Postby StrmCkr » Mon Jan 22, 2024 9:28 am

Code: Select all
+-----------------------+-------------------------+----------------------+
| 4        1267   237   | 257-16  8       35-167  | 16     126    9      |
| 1678(3)  12678  278-3 | 9       (136)   (13467) | 1468   5      2678-4 |
| 16789    16789  5     | 27-16   (16)    (1467)  | 3      1246   2678-4 |
+-----------------------+-------------------------+----------------------+
| 17       1457   6     | 3       9       15(7)   | 2      8      (45)   |
| 2        579    379   | 4       (567)   8       | 569    369    1      |
| 189(3)   14589  489-3 | 15(6)   2       15(6)   | 59-46  7      (3456) |
+-----------------------+-------------------------+----------------------+
| 5        24679  2479  | 8       1367    1369-7  | 1469   12469  236    |
| 689      3      289   | 16(5)   4       169     | 7      1269   268(5) |
| 6789     46789  1     | 67-5    367(5)  2       | 45689  3469   368-45 |
+-----------------------+-------------------------+----------------------+


AALS : 3456 @ r46c9

ALS : 13467 @ b2p5689

AHS (3) R26C1

AHS (5) R8C49

AHS (5) R59C5

AHS (7) B5P35

AAHS (6) b5p579

best way to understand this one is from R5C5 has 3 overlapped strong links for 5,7,6
where 6 => places 7 & 5, where 7 reducing the b2 als to a locked set reduces the ahs {3} which co- reduces the AALS to a locked set as {3 & 5 is removed}
where 5 => places 7 & 6 , where 7 reduces the b2 als to a locked set reducing the ahs(3) which co- reduces the AALS to a locked set as { 3 & 6 is removed}
where 7 => places 5 and 6 , where aals is reduced to 3, which reduces the ahs{3} making the als a locked set

Code: Select all
aals [25,215] 31 Candidates,
     11 Truths = {5R8 3C1 5C5 23N5 23N6 46N9 67B5}
     12 Links = {3r26 6r6 7c6 45c9 5n5 146b2 4b6 5b8}
     17 Eliminations --> (1b2) => r1c4<>1, (6b2) => r1c4<>6, (1b2) => r1c6<>1, (6b2) => r1c6<>6, (7c6) => r1c6<>7, (3r2) =>
     r2c3<>3, (4c9) => r2c9<>4, (1b2) => r3c4<>1, (6b2) => r3c4<>6, (4c9) => r3c9<>4, (3r6) => r6c3<>3, (4b6) =>
     r6c7<>4, (6r6) => r6c7<>6, (7c6) => r7c6<>7, (5b8) => r9c4<>5, (4c9) => r9c9<>4, (5c9) => r9c9<>5

Some do, some teach, the rest look it up.
stormdoku
User avatar
StrmCkr
 
Posts: 1434
Joined: 05 September 2006


Return to Puzzles