Rambling

Everything about Sudoku that doesn't fit in one of the other sections

Rambling

Postby daj95376 » Fri Jul 18, 2008 4:04 pm

I'm going to use this thread for puzzles and PMs that I find interesting. Today, I discovered an XY-Ring while manually examining a continuous loop XY-Chain. Did I catch all of the eliminations?

Code: Select all
.52..7..49..5...1.7.834..95.95.....2..1.7....3....4.........5...73.....95.92...41

 +--------------------------------------------------------------+
 | *16    5     2     |  18-6  9     7     |  3    *68    4     |
 |  9     3     4     |  5     26    268   |  268   1     7     |
 |  7    *16    8     |  3     4     126   |  26    9     5     |
 |--------------------+--------------------+--------------------|
 |  468   9     5     |  168   1368  1368  |  14    7     2     |
 |  2468  24-6  1     |  689   7     25    |  49    35    36    |
 |  3    *26    7     |  19   *25    4     |  19   *58    68    |
 |--------------------+--------------------+--------------------|
 |  124   124   6     |  7     18    9     |  5     23-8  38    |
 |  12    7     3     |  4     158   158   |  68    26-8  9     |
 |  5     8     9     |  2     36    36    |  7     4     1     |
 +--------------------------------------------------------------+

Note: Sudopedia has an empty entry for XY-Ring. Jeff indicates that it has four cells/nodes/vertices/whatever. However, Google lists other Sudoku sites for XY-Ring where it's defined as a continuous loop XY-Chain of any length.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby hobiwan » Fri Jul 18, 2008 4:42 pm

I think you covered everything. My solver finds additional eliminations via XY-Chains, but none that can be incorporated into your loop.
hobiwan
2012 Supporter
 
Posts: 321
Joined: 16 January 2008
Location: Klagenfurt

Postby daj95376 » Fri Jul 18, 2008 5:38 pm

Thanks hobiwan for checking my results!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby daj95376 » Wed Jul 23, 2008 2:15 pm

This puzzle made it from an AU site to Eureka! recently. Unfortunately, I didn't find ttt's solution for comparison. No matter because he probably did something elegant.

Code: Select all
 +-----------------------+
 | . . . | . 2 1 | . 9 . |
 | . 7 . | . . 5 | . 2 1 |
 | . . . | . . . | 3 . . |
 |-------+-------+-------|
 | 6 . . | . . . | . 8 . |
 | 4 . . | . 9 . | . . 6 |
 | . 8 . | . . . | . . 2 |
 |-------+-------+-------|
 | . . 7 | . . . | . . . |
 | 1 5 . | 7 . . | . 3 . |
 | . 9 . | 6 8 . | . . . |
 +-----------------------+

Code: Select all
# after basic SSTS -- excluding colors and multiple colors
 *--------------------------------------------------------------------*
 | 358    346    368    | 348    2      1      | 45678  9      4578   |
 | 389    7      368    | 3489   36     5      | 468    2      1      |
 | 2589   1246   1268   | 489    67     4678   | 3      456    458    |
 |----------------------+----------------------+----------------------|
 | 6      12     1259   | 1245   157    47     | 14579  8      3      |
 | 4      123    1235   | 12358  9      78     | 157    157    6      |
 | 7      8      1359   | 1345   1356   46     | 1459   145    2      |
 |----------------------+----------------------+----------------------|
 | 238    236    7      | 15     15     239    | 2468   46     489    |
 | 1      5      268    | 7      4      29     | 268    3      89     |
 | 23     9      4      | 6      8      23     | 157    157    57     |
 *--------------------------------------------------------------------*

  finned X-Wing  r18\c37           =>  [r23c3]<>6

  8r7c7 8r8c3 6r8c7 2r7c7          =>  [r7c7]<>8   (chain)

  3r7c2 3r56c3 8r2c3 6r1c3 [b7]~2  =>  [r7c2]<>3   (SIN)

# SSTS

Q: After the SIN elimination, there's (23) UR Type 4 [r79c16] that's not necessary. Are there any URs present after the finned X-Wing?

[Edit: inserted SIN as proper term]
Last edited by daj95376 on Fri Aug 01, 2008 10:42 pm, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby wintder » Wed Jul 23, 2008 7:11 pm

Early on there is a hidden UR. It doesn't help me any, does it help you?

Code: Select all
.---------------------.---------------------.---------------------.
| 358    346    368   | 348    2      1     | 45678  9      4578  |
| 389    7      368   | 3489   36     5     | 468    2      1     |
| 2589   1246   1268  | 489    67     4678  | 3      456    458   |
:---------------------+---------------------+---------------------:
| 6      12     1259  | 1245   157    47    | 14579  8      3     |
| 4      123    1235  | 12358  9      78    | 157    157    6     |
| 7      8      1359  | 1345   1356   46    | 1459   145    2     |
:---------------------+---------------------+---------------------:
|*38-2   236    7     | 15     15    *239   | 2468   46     489   |
| 1      5      268   | 7      4      29    | 268    3      89    |
|*23     9      4     | 6      8     *23    | 157    157    57    |
'---------------------'---------------------'---------------------'
wintder
 
Posts: 297
Joined: 24 April 2007

Postby daj95376 » Wed Jul 23, 2008 8:07 pm

wintder wrote:Early on there is a hidden UR. It doesn't help me any, does it help you?

wintder: Thanks for the reply. Unfortunately, I'm not up on hidden URs. And, I agree with your assessment that it doesn't seem to help.

I keep thinking there must be a (15) UR in this mess -- especially with (157) locked into [r59c78] and [r9c9]=57.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby Steve K » Thu Jul 24, 2008 2:14 am

daj, ttt's solution is among the comments on the "tough" page for that date: http://sudoku.com.au/1V21-7-2008-sudoku.aspx
(columns are letters, rows are numbers, bottom left corner cell is a1)
Steve K
 
Posts: 98
Joined: 18 January 2007

Postby daj95376 » Thu Jul 24, 2008 4:07 am

Steve K: Thanks for the link. Unfortunately, I only understand the rudamentary basics of Eureka notation. ttt's solution eludes me.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby daj95376 » Mon Jul 28, 2008 4:01 pm

[Withdrawn: discovered that I was describing a SIN.]
Last edited by daj95376 on Fri Aug 01, 2008 10:43 pm, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby daj95376 » Wed Jul 30, 2008 4:32 am

I keep tweaking my puzzle generator hoping it will generate puzzles that are difficult enough to be interesting. Maybe this one qualifies. It can be solved with SSTS, fish, and chains. No forcing nets needed ... just patience.

Code: Select all
 +-----------------------+
 | . . 4 | . 5 8 | . . . |
 | . . 7 | 6 . . | . . . |
 | 5 2 3 | . . . | . . . |
 |-------+-------+-------|
 | . 3 . | 1 7 . | 8 6 . |
 | 4 . . | 8 . . | 5 3 . |
 | 6 . . | . . 3 | . . 7 |
 |-------+-------+-------|
 | . . . | 3 6 . | 4 . . |
 | . . . | 4 8 . | . 9 . |
 | . . . | . . 9 | . . 3 |
 +-----------------------+   # P_Set_F: #21
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby ttt » Thu Jul 31, 2008 2:30 pm

Hi All,
Nice puzzle from sudoku.com.au (tough page Aug. 1st/08), ER 8.8 but can solve by AIC’s only.
Code: Select all
 *-----------*
 |..8|7..|..5|
 |...|...|9..|
 |9..|6..|.4.|
 |---+---+---|
 |...|.4.|.6.|
 |.35|...|41.|
 |.7.|.2.|...|
 |---+---+---|
 |.9.|..5|..8|
 |..3|...|...|
 |6..|..1|2..|
 *-----------*

After SSTS
 *-----------------------------------------------------------------------------*
 | 123     1246    8       | 7       139     249     | 136     23      5       |
 | 12357   12456   1247    | 2348    1358    248     | 9       2378    1367    |
 | 9       125     127     | 6       1358    28      | 1378    4       137     |
 |-------------------------+-------------------------+-------------------------|
 | 128     128     9       | 5       4       378     | 378     6       237     |
 | 28      3       5       | 89      6789    6789    | 4       1       279     |
 | 4       7       6       | 1       2       389     | 358     3589    39      |
 |-------------------------+-------------------------+-------------------------|
 | 127     9       1247    | 234     367     5       | 1367    37      8       |
 | 12578   12458   3       | 2489    6789    246789  | 1567    579     14679   |
 | 6       458     47      | 3489    3789    1       | 2       3579    3479    |
 *-----------------------------------------------------------------------------*

Good luck…:D !

PS. sorry Daj, I post puzzle here...
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Postby daj95376 » Thu Jul 31, 2008 3:03 pm

Hello ttt. Welcome to my ramble.

Well, your puzzle has my solver stumped. After five unproductive chains, it was forced to go to a forcing net (that was present w/o the chains). I'm looking forward to your solution.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby ttt » Fri Aug 01, 2008 3:50 am

Hi daj,
Thanks!
First, I apologize I have to present my solution by Eureka (or AIC) notation. I can’t present by NL notation at present, sorry again about that (I’m afraid, ronk would require me to remind him something…:D )

1) (3=7)r7c8-(7)r7c1=(hp57)r28c1-(3)r2c1=(3)r1c1 => r1c8<>3, single r1c8=2
2) (1)r23c3=(1)r7c3-(hp24)r7c34=(2)r7c1-(hp28)r45c1=(1)r4c1 => r12c1<>1, single r1c1=3
3) (1)r8c9=(1)r23c9-(1=6)r1c7-(6)r2c9=(6)r8c9 => r8c9<>479, r3c7<>1, some singles
4) 8’s : r3c7=r2c8-r6c8=r6c6 => r3c6<>8, some singles
5) XY-wing : r5c1=82, r5c9=27, r4c8=78 => r4c1<>8, singles to the end

I found some chains more but not necessary for solution then I deducted on my solution.

Thanks again,
ttt
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Postby daj95376 » Fri Aug 01, 2008 10:43 am

ttt: An impressive solution using subsets to generate some eliminations.

Since my solver doesn't incorporate subsets in chains, it solved the original puzzle with ...

1) SSTS
2) SIN: 4r8c9 6r2c9 1r3c9 3r1c7 3r3c5 5r2c5 1r1c5 [r1]~2 => [r8c9]<>4
3) SSTS
Last edited by daj95376 on Fri Aug 01, 2008 10:44 pm, edited 1 time in total.
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby ttt » Fri Aug 01, 2008 12:05 pm

Hi daj,
I present your elimination r8c9=4 by using dual Kraken - 3's on row 3 and cell r1c7 :
Code: Select all
(3)r3c5-(hp15)r23c5=(1)r1c5-(ht123)r1c178=(6)r1c7-(6)r2c9=(6)r8c9
 ||
(3)r3c79-(3)r1c7
          ||
         (1)r1c7-(1)r23c9=(1)r8c9
          ||
         (6)r1c7-(6)r2c9=(6)r8c9

=> r8c9<>4

ttt
ttt
 
Posts: 185
Joined: 20 October 2006
Location: vietnam

Next

Return to General