The example grid position shown below was derived from the Sudocue Nightmare for 5/20/07.
The elimination of interest is r4c4 <> 7.
- Code: Select all
----------------------------------------------------
28 2378 2348 | 1 9 457 | 235 2345 6
126 236 2346 | CD25 C234 8 | 9 7 A145
129 2379 5 | C247 C234 6 | 123 8 A14
-----------------+-----------------+----------------
5 26 126 | 47 16 3 | 8 9 A47
3 689 168 | 4789 5 479 | 167 146 2
89 4 7 | 289 16 29 | 156 156 3
-----------------+-----------------+----------------
27 1 23 | 6 28 59 | 4 235 789
267 5 9 | 3 248 24 | 1267 126 178
4 2368 2368 | BD59 7 1 | 236 236 A59
----------------------------------------------------
Define the following ALS’s:
ALS A: (14579)r2349c9
ALS B: (59)r9c4
ALS C: (23457)r23c45
ALS D: (259)r29c4 (add cell r2c4 to ALS B)
Form a (conventional) grouped AIC using ALS’s A,B, and C:
(7=1459)r2349c9 – (9=5)r9c4 – (5=2347)r23c45 => r4c4 <> 7,
which is equivalent to an ALS-XY-Wing rule move.
Now, the confusion (for me) arises when one replaces ALS B with ALS D to form the new AIC,
(7=1459)r2349c9 – (9=52)r29c4 – (5=2347)r23c45.
At first look, this new chain would appear to imply the same elimination as before (r4c4 <> 7). However, ALS D and C share a common cell (r2c4), although two different (and single-occurrence) digits, 2 and 5, form the weak link between them.
Question 1: So, is this a properly linked AIC (and deduction)?
Going a step further, one can also simply switch the positions of digits 2 and 5 in ALS D to form another new AIC,
(7=1459)r2349c9 – (9=25)r29c4 – (5=2347)r23c45.
Again, ALS D and C share the common cell, r2c4, but now the weakly linking digit (5) appears more like a true “restricted common” between ALS D and C. However, it has also been stated in this forum that overlapping ALS cells cannot contain a restricted common of the two sets, in which case the above AIC is then incorrect.
Question 2: So, is this AIC improperly linked between ALS D and C because digit 5 is a restricted common?
-------------------------------------------------------------
One other unrelated elimination of interest is r1c2 <> 2.
- Code: Select all
----------------------------------------------------
G28 F2378 2348 | 1 9 457 | 235 2345 6
126 EF236 2346 | 25 234 8 | 9 7 145
129 2379 5 | 247 234 6 | 123 8 14
------------------+---------------+----------------
5 EF26 126 | 47 16 3 | 8 9 47
3 EF689 168 | 4789 5 479 | 167 146 2
G89 4 7 | 289 16 29 | 156 156 3
------------------+---------------+----------------
27 1 23 | 6 28 59 | 4 235 789
267 5 9 | 3 248 24 | 1267 126 178
4 EF2368 2368 | 59 7 1 | 236 236 59
----------------------------------------------------
Define the following ALS’s:
ALS E: (23689)r2459c2
ALS F: (236789)r12459c2 (add cell r1c2 to ALS E)
ALS G: (289)r16c1
Form a grouped AIC using ALS’s E and G:
(2=3689)r2459c2 - (9=82)r16c1 => r1c2 <> 2 (also r3c2 <> 2).
which is equivalent to an ALS-XZ rule move.
Now, confusion again arises when one replaces ALS E with ALS F to form the new AIC,
(7=23689)r12459c2 - (9=82)r16c1.
This new chain clearly shows a strong-inference link between (single-occurrence) (7)r1c2 and (2)r1c1, which, in turn, seems to imply the desired elimination (r1c2 <> 2). However, the candidate-elimination cell, r1c2, is actually a part of (i.e., overlaps) ALS F.
Question 3: The chain is certainly valid, but does it properly imply the r1c2 <> 2 elimination?