There are several equivalent ways to prove an elimination or a placement !
Here : -2r4c6 (or +2r4c5) can be proved by using 5 SIS : 7R248 R8C2 2R7.
- Code: Select all
+------------------+-------------------------+--------------------+
| 3789 34789 79 | 1 34579 34579 | 6 2 348 |
| 6 234(7) 1 | 24(7) 234(7) 8 | 9 34 5 |
| 2389 23489 5 | 24 6 2349 | 1 348 7 |
+------------------+-------------------------+--------------------+
| 4 58(7) 6 | 3 125(7) 5-2(7) | 58 9 18 |
| 3789 35789 2 | 4578 14579 4579 | 358 135678 1368 |
| 3789 1 79 | 578 579 6 | 4 3578 2 |
+------------------+-------------------------+--------------------+
| 5 9(2) 3 | 6 8 4(2) | 7 14 149 |
| 1 (27) 4 | 9 235(7) 235(7) | 2358 3568 368 |
| 279 6 8 | 245(7) 2345(7) 1 | 235 345 349 |
+------------------+-------------------------+--------------------+
1. As a "
Transfer Matrix" (the most general way-vertically written "chain" to show explicitly all the relations between candidates) :
- Code: Select all
2r7c6=2r7c2
2r8c2=7r8c2
7r8c56=7r9c45
7r2c2==7r2c45
7r4c2==7r4c5==7r4c6
-> 2r7c6=7r4c6 :=> -2r4c6
2. As a
Kraken Row 7R4 -> 2r7c6=7r4c6 :=> -2r4c6
7r4c2-(7=2)r8c2-2r7c2=2r7c6
||
7r4c5-7r289c5=*[7r8c6=*7r9c4-7r2c4=*7r2c3]-(7=2)r8c2-2r7c2=2r7c6
||
7r4c6
3. As an
AIC : As 7R24B8 is an almost finned swordfish (the fin is 7r8c6) ... =>
Chain[5] : 7r4c6=FinnedSwordfish(7R24B8)-(7=2)r8c2-2r7c2=2r7c6 :=> -2r4c6
Is this guessing?
No comment
!