(solve ".............9...8..76.5.....64..5...3..2..1...4..76.....9.47......3..51.2.......")
***********************************************************************************************
*** SudoRules 20.1.s based on CSP-Rules 2.1.s, config = S
*** Using CLIPS 6.32-r770
***********************************************************************************************
hidden-single-in-a-row ==> r5c6 = 6
hidden-single-in-a-block ==> r4c6 = 9
hidden-single-in-a-block ==> r6c4 = 3
hidden-single-in-a-column ==> r1c9 = 5
229 candidates, 1572 csp-links and 1572 links. Density = 6.02%
whip[1]: c9n6{r9 .} ==> r9c8 ≠ 6, r7c8 ≠ 6
whip[1]: r8n6{c2 .} ==> r9c1 ≠ 6, r7c1 ≠ 6, r7c2 ≠ 6
whip[1]: r7n2{c9 .} ==> r8c7 ≠ 2
whip[1]: c7n2{r3 .} ==> r1c8 ≠ 2, r2c8 ≠ 2, r3c8 ≠ 2, r3c9 ≠ 2
whip[1]: c9n7{r5 .} ==> r4c8 ≠ 7
whip[1]: c3n2{r2 .} ==> r3c1 ≠ 2, r1c1 ≠ 2, r2c1 ≠ 2
hidden-single-in-a-row ==> r3c7 = 2
whip[1]: b5n1{r6c5 .} ==> r9c5 ≠ 1, r1c5 ≠ 1, r3c5 ≠ 1, r7c5 ≠ 1
whip[1]: b8n1{r9c6 .} ==> r9c1 ≠ 1, r9c3 ≠ 1
whip[1]: r3n1{c2 .} ==> r1c1 ≠ 1, r1c2 ≠ 1, r1c3 ≠ 1, r2c1 ≠ 1, r2c2 ≠ 1, r2c3 ≠ 1
hidden-single-in-a-column ==> r7c3 = 1
hidden-pairs-in-a-column: c8{n6 n7}{r1 r2} ==> r2c8 ≠ 4, r2c8 ≠ 3, r1c8 ≠ 9, r1c8 ≠ 4, r1c8 ≠ 3
hidden-triplets-in-a-block: b7{r9c1 r8c2 r8c1}{n4 n6 n7} ==> r9c1 ≠ 9, r9c1 ≠ 8, r9c1 ≠ 5, r9c1 ≠ 3, r8c2 ≠ 9, r8c2 ≠ 8, r8c1 ≠ 9, r8c1 ≠ 8
whip[1]: b7n9{r9c3 .} ==> r1c3 ≠ 9, r5c3 ≠ 9
naked-pairs-in-a-row: r5{c3 c4}{n5 n8} ==> r5c7 ≠ 8, r5c1 ≠ 8, r5c1 ≠ 5
whip[1]: c7n8{r9 .} ==> r7c8 ≠ 8, r9c8 ≠ 8
swordfish-in-columns: n3{c3 c6 c7}{r9 r2 r1} ==> r9c9 ≠ 3, r9c8 ≠ 3, r2c1 ≠ 3, r1c1 ≠ 3
jellyfish-in-columns: n8{c3 c4 c6 c7}{r9 r5 r1 r8} ==> r9c5 ≠ 8, r1c5 ≠ 8, r1c2 ≠ 8, r1c1 ≠ 8
naked-quads-in-a-block: b1{r1c1 r1c2 r2c1 r2c2}{n4 n9 n6 n5} ==> r3c2 ≠ 9, r3c2 ≠ 4, r3c1 ≠ 9, r3c1 ≠ 4, r2c3 ≠ 5
whip[1]: r3n9{c9 .} ==> r1c7 ≠ 9
x-wing-in-columns: n5{c3 c4}{r5 r9} ==> r9c5 ≠ 5
naked-quads-in-a-row: r9{c1 c5 c9 c8}{n4 n7 n6 n9} ==> r9c7 ≠ 9, r9c7 ≠ 4, r9c4 ≠ 7, r9c3 ≠ 9
stte