Puzzle289

Post puzzles for others to solve here.

Puzzle289

Postby Yogi » Fri Aug 26, 2022 10:10 pm

....163..54.......7..3......86..3......4...5................6.14..5.........2....

Code: Select all
+---+---+---+
|...|.16|3..|
|54.|...|...|
|7..|3..|...|
+---+---+---+
|.86|..3|...|
|...|4..|.5.|
|...|...|...|
+---+---+---+
|...|...|6.1|
|4..|5..|...|
|...|.2.|...|
+---+---+---+

Not just another 17er. See what happens when you ‘Solve Singles.’
After that it’s all in the eye of the beholder. Is it easy to solve, hard, or just interesting?
Hmm . . . No 9s, only one 2 and one 8 solved, and no (28) cells, until you make some.
Can the Chain Gang find a single-stepper or something like it?
User avatar
Yogi
2017 Supporter
 
Posts: 352
Joined: 05 December 2015
Location: New Zealand

Re: Puzzle289

Postby pjb » Sat Aug 27, 2022 2:48 am

Ugly! A memory chain and a simple chain. Surely something better
Code: Select all
 289     29      289    | 7      1      6      | 3      4      5     
 5       4       3      | 289    89     289    | 1      6      7     
 7       6       1      | 3      4      5      |d29    e289    289   
------------------------+----------------------+---------------------
 1       8       6      |a29     5      3      | 4      7    b29     
 3       29      7      | 4      89     1      |c289    5      6     
h29      5       4      | 6      7      89-2   |c289    1      3     
------------------------+----------------------+---------------------
g289     7       5      | 89*    3      4      | 6     f289    1     
 4       1       289    | 5      6      89     | 7      3      289   
 6       3       89     | 1      2      7      | 5      89     4     

(2=9)r4c4 - (9=2)r4c9 - (2)r56c7 = (2)r3c7 - (2)r3c8 = (2-9)r7c8*4 = (9)r7c1 - (9=2)r6c1 => -2 r6c6
Then
(2=9)r5c2 - (9=8)r5c5 - (8=9)r6c6 - (9)r8c6 = (9-2)r8c3 = (2)r1c3 => -2 r1c2; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Puzzle289

Postby jco » Sat Aug 27, 2022 3:30 am

I found a solution related to Phil's findings. Also two steps.

After basics

Code: Select all
.----------------------------------------------------.
|a(2)89 29   289  | 7    1    6    |  3    4    5    |
|  5    4    3    | 289  89   289  |  1    6    7    |
|  7    6    1    | 3    4    5    | g9-2 A289  289  |
|-----------------+----------------+-----------------|
|  1    8    6    |d29   5    3    |  4    7   e29   |
|  3   E29   7    | 4    89   1    |fF289  5    6    |
| D29   5    4    | 6    7    289  |f 289  1    3    |
|-----------------+----------------+-----------------|
|bC289  7    5    |c89   3    4    |  6   B289  1    |
|  4    1    289  | 5    6    89   |  7    3    289  |
|  6    3    89   | 1    2    7    |  5    89   4    |
'----------------------------------------------------'

1. Almost X-Chain

(2*-8)r1c1 = (8)r7c1 - (8=9)r7c4 - (9)r4c4 = (9)r4c9 - (9)r56c7 = (9)r3c7 [tags a...g]
||
(2): r3c8 = r7c8 - r7c1 =* r6c1 - r5c2 = r4c7 [tags A...F]

=> -2 r4c7 [4 placements]
----
Code: Select all
.--------------------------------------------------.
| 289  9-2 a289  | 7    1    6    | 3    4    5    |
| 5    4    3    | 89   89   2    | 1    6    7    |
| 7    6    1    | 3    4    5    | 9    28   28   |
|----------------+----------------+----------------|
| 1    8    6    | 2    5    3    | 4    7    9    |
| 3   f29   7    | 4   e89   1    | 28   5    6    |
| 29   5    4    | 6    7   d89   | 28   1    3    |
|----------------+----------------+----------------|
| 289  7    5    | 89   3    4    | 6    289  1    |
| 4    1   b289  | 5    6   c89   | 7    3    28   |
| 6    3    89   | 1    2    7    | 5    89   4    |
'--------------------------------------------------'

2. Extended M-wing

(2)r1c3 = (2-9)r8c3 = (9)r8c6 - (9)r6c6 = (9)r5c5 - (9=2)r5c2 => -2 r1c2; ste

Thanks for the puzzle!
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle289

Postby denis_berthier » Sat Aug 27, 2022 5:22 am

Yogi wrote:....163..54.......7..3......86..3......4...5................6.14..5.........2....
Is it easy to solve, hard, or just interesting?
Can the Chain Gang find a single-stepper or something like it?

SER = 7.1; W = 3; BC = 3
It's a good example of the absurdity of trying to find 1-step or 2-step solutions at any cost.
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------+-------------+-------------+
   ! 289 29  289 ! 7   1   6   ! 3   4   5   !
   ! 5   4   3   ! 289 89  289 ! 1   6   7   !
   ! 7   6   1   ! 3   4   5   ! 29  289 289 !
   +-------------+-------------+-------------+
   ! 1   8   6   ! 29  5   3   ! 4   7   29  !
   ! 3   29  7   ! 4   89  1   ! 289 5   6   !
   ! 29  5   4   ! 6   7   289 ! 289 1   3   !
   +-------------+-------------+-------------+
   ! 289 7   5   ! 89  3   4   ! 6   289 1   !
   ! 4   1   289 ! 5   6   89  ! 7   3   289 !
   ! 6   3   89  ! 1   2   7   ! 5   89  4   !
   +-------------+-------------+-------------+
63 candidates

There is a totally trivial solution:
Code: Select all
biv-chain[2]: r4n9{c9 c4} - b8n9{r7c4 r8c6} ==> r8c9≠9
whip[1]: b9n9{r9c8 .} ==> r3c8≠9
biv-chain[3]: r2c5{n9 n8} - b5n8{r5c5 r6c6} - c6n2{r6 r2} ==> r2c6≠9
biv-chain[3]: c6n9{r8 r6} - r6c1{n9 n2} - b7n2{r7c1 r8c3} ==> r8c3≠9
singles ==> r8c6=9, r7c4=8, r1c1=8
finned-swordfish-in-rows: n2{r1 r8 r5}{c2 c3 c9} ==> r4c9≠2
(This is also a bivalue-chain[3]: biv-chain[3]: r5n2{c7 c2} - r1n2{c2 c3} - r8n2{c3 c9} ==> r4c9≠2)
stte


There's no 1-step solution with g-braids of any length.

The simplest 2-step solution requires a z-chain[5]:
Code: Select all
z-chain[5]: b5n2{r4c4 r6c6} - r6c1{n2 n9} - r7n9{c1 c8} - b9n2{r7c8 r8c9} - r4c9{n2 .} ==> r4c4≠9
singles ==> r4c4=2, r4c9=9, r3c7=9, r2c6=2
biv-chain[3]: b7n2{r7c1 r8c3} - r8n9{c3 c6} - r6n9{c6 c1} ==> r6c1≠2, r7c1≠9
stte

Remember that complexity of chains increases exponentially with their length.
Last edited by denis_berthier on Sat Aug 27, 2022 9:36 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Puzzle289

Postby DEFISE » Sat Aug 27, 2022 9:23 am

A lot of singles.
Box/Line: 8b6c7 => -8r3c7
whip[5]: r4c4{n2 n9}- r4c9{n9 n2}- b9n2{r8c9 r7c8}- r7n9{c8 c1}- r6c1{n9 .} => -2r6c6
Single(s): 2r2c6, 2r4c4, 9r4c9, 9r3c7
whip[3]: c6n9{r8 r6}- r6c1{n9 n2}- b7n2{r7c1 .} => -9r8c3
STTE
DEFISE
 
Posts: 284
Joined: 16 April 2020
Location: France

Re: Puzzle289

Postby denis_berthier » Sat Aug 27, 2022 9:31 am

DEFISE wrote:A lot of singles.
Box/Line: 8b6c7 => -8r3c7
whip[5]: r4c4{n2 n9}- r4c9{n9 n2}- b9n2{r8c9 r7c8}- r7n9{c8 c1}- r6c1{n9 .} => -2r6c6
Single(s): 2r2c6, 2r4c4, 9r4c9, 9r3c7
whip[3]: c6n9{r8 r6}- r6c1{n9 n2}- b7n2{r7c1 .} => -9r8c3
STTE

It seems I had failed to see some of SudoRules results. I've corrected my post.
Last edited by denis_berthier on Sat Aug 27, 2022 9:54 am, edited 1 time in total.
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Puzzle289

Postby P.O. » Sat Aug 27, 2022 9:37 am

a POM solution:
Hidden Text: Show
Code: Select all
templates after initialization + singles:
....1..........1....1......1.............1..........1.........1.1..........1.....

..2...........2..........2....2......2.............2..2................2....2....
.2............2...........2...2...........2..2...............2...2..........2....
2.............2...........2...2......2.............2.........2...2..........2....
2...........2...........2..........2.2............2..........2...2..........2....

......3....3.........3..........3...3................3....3...........3..3.......

.......4..4...........4..........4.....4.......4...........4...4................4

........55.............5.......5...........5..5.........5.........5...........5..

.....6..........6..6.........6..............6...6...........6......6....6........

...7.............77...............7...7..........7.....7.............7.......7...

..8.........8.............8.8...........8..........8..8.............8..........8.
8.............8...........8.8...........8..........8.....8.......8.............8.
8.............8..........8..8...........8..........8.....8.............8..8......
8............8............8.8.............8.......8......8.......8.............8.
8............8...........8..8.............8.......8......8.............8..8......
8...........8.............8.8...........8..........8.........8......8.....8......

..9..........9............9...9......9.............9..9.............9..........9.
.9............9.........9..........9....9....9...........9.......9.............9.
.9...........9............9...9...........9..9...............9......9.....9......
.9..........9...........9..........9....9....9...............9......9.....9......
9............9............9...9......9.............9.........9......9.....9......
9............9..........9..........9.9............9......9.......9.............9.


testing for compatibility between (2 8) (2 9) and (8 9) gives only one possibility in each case:
..2...........2..........2....2......2.............2..2................2....2....
8............8............8.8.............8.......8......8.......8.............8.

..2...........2..........2....2......2.............2..2................2....2....
.9..........9...........9..........9....9....9...............9......9.....9......

8............8............8.8.............8.......8......8.......8.............8.
.9..........9...........9..........9....9....9...............9......9.....9......


ans so only one possibility for (2 8 9)
..2...........2..........2....2......2.............2..2................2....2....
8............8............8.8.............8.......8......8.......8.............8.
.9..........9...........9..........9....9....9...............9......9.....9......


solution:
....1..........1....1......1.............1..........1.........1.1..........1.....
..2...........2..........2....2......2.............2..2................2....2....
......3....3.........3..........3...3................3....3...........3..3.......
.......4..4...........4..........4.....4.......4...........4...4................4
........55.............5.......5...........5..5.........5.........5...........5..
.....6..........6..6.........6..............6...6...........6......6....6........
...7.............77...............7...7..........7.....7.............7.......7...
8............8............8.8.............8.......8......8.......8.............8.
.9..........9...........9..........9....9....9...............9......9.....9......
P.O.
 
Posts: 1762
Joined: 07 June 2021


Return to Puzzles