SteveG48 wrote: (1=389)r3c129 - 8r12c3 = 8r5c3&(4,2)r6c36 - 2r5c36 = r5c7 - r4c7 = (2-1)r4c1 = 1r3c1 => -1 r1c23,r3c6 ; ste
Nice!
When solving the puzzle, I did not consider the possibility of enforcing my move 3 at the start:
- Code: Select all
.------------------------------------------------------------------------------.
| 4 136789 D689-1 | 3589 3589 137 | 56 58 2 |
| 3789 2 D689 | 34589 34589 347 | 456 1 39 |
|Ea1389 E1389 5 | 2 6 134 | 7 48 E39 |
|--------------------------+-------------------------+-------------------------|
| b1289 1589 3 | 4589 4589 6 | 245 45 7 |
| 6 58 C248 | 3458 7 234 | 245 9 1 |
| b279 579 Cc249 | 1 459 c24 | 8 3 6 |
|--------------------------+-------------------------+-------------------------|
| 38 368 7 | 346 34 9 | 1 2 5 |
|A(2)3 4 B26 | 36 1 5 | 9 7 8 |
| 5 19 d19 | 7 2 8 | 3 6 4 |
'------------------------------------------------------------------------------'
[(1)r3c1 =* (12)r46c1 - (2=49)r6c36 - (9=1)r9c3] = (2*)r8c1 - (2)r8c3 = (24-8)r56c3 = (8)r12c3 - (8=391)r3c129
=> -1 r1c3 [NP(17)r1c26 and ste]
But even in this case, your move accomplishes more because you don't need to visit box 7.