Puzzle 8

Post puzzles for others to solve here.

Puzzle 8

Postby P.O. » Tue Oct 12, 2021 2:53 pm

Code: Select all
5 . .   3 . .   . 2 .
. . 6   . . 2   . 7 .
. . .   . . .   4 . 5
9 2 .   . . 7   . . 6
. . .   . 5 .   9 . .
. 5 4   . . .   . . .
. 4 7   1 . .   . . .
. 9 .   . 6 .   . 1 8
. . 1   . . .   . 3 .

5..3...2...6..2.7.......4.592...7..6....5.9...54.......471......9..6..18..1....3.
P.O.
 
Posts: 1764
Joined: 07 June 2021

Re: Puzzle 8

Postby eleven » Tue Oct 12, 2021 5:51 pm

Code: Select all
 *-----------------------------------------------------------------*
 |  5      78    9    |  3      478   e468    | d68     2    1     |
 |  4      18    6    |  5      189    2      |  38     7   c39    |
 |  178    3     2    |  6789   1789   1689   |  4     c69   5     |
 |--------------------+-----------------------+--------------------|
 |  9      2    a38   | a48     1348   7      |  13     5    6     |
 |  167    167  #38   |  268    5     #1368   |  9      4   #237   |
 |  167    5     4    |  269    1239   1369   |  123    8    237   |
 |--------------------+-----------------------+--------------------|
 |  2368   4     7    |  1      238    358    |  256    69   29    |
 |  23     9     5    |  27-4   6     b34     |  27     1    8     |
 |  268    68    1    |  2789   2789   589    |  2567   3    4     |
 *-----------------------------------------------------------------*

Kraken 3r5:
3r5c3 - (3=84)r4c34
3r5c6 - (3=4)r8c6
3r5c9 - (3=96)b3p68 - r1c7 = (6-4)r1c6 = r8c6
=> -4r8c4, skyscraper 2 to end
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Puzzle 8

Postby totuan » Wed Oct 13, 2021 4:07 am

Hi All,
Code: Select all
 *-----------------------------------------------------------*
 | 5     78    9     | 3     478   468   | 68    2     1     |
 | 4     18    6     | 5     189   2     | 38    7     39    |
 | 178   3     2     | 6789  1789  1689  | 4     69    5     |
 |-------------------+-------------------+-------------------|
 | 9     2     38    | 48   *1348  7     | 13   *5     6     |
 | 167   167   38    | 268  *5     1368  | 9    *4     237   |
 | 167   5     4     | 269   1239  1369  | 123   8     237   |
 |-------------------+-------------------+-------------------|
 | 2368  4     7     | 1     238   358   | 256   69    29    |
 | 23    9     5     | 247   6     34    | 27    1     8     |
 | 268   68    1     | 2789  2789  589   | 2567  3     4     |
 *-----------------------------------------------------------*

I’m not familiar with reverse BUG, so my question is: I can eliminate 4r4c5 by reverse BuG or not? Thanks for your help!

Thanks for the puzzle.
totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Re: Puzzle 8

Postby marek stefanik » Wed Oct 13, 2021 6:39 am

Hi totuan,
You cannot, since there are other 45 givens in the grid.

Imagine none of the 45s in r45c58 were given. Then you'd have the classic UR.
With reverse BUG the 'DP' contains all the givens and so you can't resolve its digits in the rest of the grid.

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Puzzle 8

Postby denis_berthier » Wed Oct 13, 2021 7:09 am

.
SER = 8.4

Code: Select all
Resolution state after Singles and whips[1]:
   +----------------+----------------+----------------+
   ! 5    78   9    ! 3    478  468  ! 68   2    1    !
   ! 4    18   6    ! 5    189  2    ! 38   7    39   !
   ! 178  3    2    ! 6789 1789 1689 ! 4    69   5    !
   +----------------+----------------+----------------+
   ! 9    2    38   ! 48   1348 7    ! 13   5    6    !
   ! 167  167  38   ! 268  5    1368 ! 9    4    237  !
   ! 167  5    4    ! 269  1239 1369 ! 123  8    237  !
   +----------------+----------------+----------------+
   ! 2368 4    7    ! 1    238  358  ! 256  69   29   !
   ! 23   9    5    ! 247  6    34   ! 27   1    8    !
   ! 268  68   1    ! 2789 2789 589  ! 2567 3    4    !
   +----------------+----------------+----------------+
130 candidates.


1) Simplest first solution, in W7:
t-whip[4]: r2n9{c5 c9} - r7c9{n9 n2} - c7n2{r9 r6} - c5n2{r6 .} ==> r9c5≠9
t-whip[5]: r7c8{n6 n9} - r7c9{n9 n2} - r5n2{c9 c4} - r8n2{c4 c1} - c1n3{r8 .} ==> r7c1≠6
whip[1]: r7n6{c8 .} ==> r9c7≠6
z-chain[5]: r3n8{c6 c1} - r7n8{c1 c6} - r7n5{c6 c7} - c7n6{r7 r1} - c7n8{r1 .} ==> r2c5≠8
z-chain[7]: r7n9{c9 c8} - b9n6{r7c8 r7c7} - r1n6{c7 c6} - c6n4{r1 r8} - r8n3{c6 c1} - r8n2{c1 c4} - r5n2{c4 .} ==> r7c9≠2
singles ==> r7c9=9, r2c9=3, r2c7=8, r1c7=6, r3c8=9, r2c2=1, r2c5=9, r7c8=6
whip[1]: b9n2{r9c7 .} ==> r6c7≠2
biv-chain[3]: r1c6{n8 n4} - c5n4{r1 r4} - r4c4{n4 n8} ==> r3c4≠8, r5c6≠8
biv-chain[3]: r3c4{n6 n7} - r1n7{c5 c2} - r5c2{n7 n6} ==> r5c4≠6
biv-chain[4]: r4c4{n8 n4} - b8n4{r8c4 r8c6} - r1c6{n4 n8} - c2n8{r1 r9} ==> r9c4≠8
whip[1]: c4n8{r5 .} ==> r4c5≠8
biv-chain[4]: r8c6{n3 n4} - c4n4{r8 r4} - r4n8{c4 c3} - b4n3{r4c3 r5c3} ==> r5c6≠3
stte

2) There's no 1-step solution with whips of length ≤ 8

3) There are lots of 2-step solutions in W8 and several in W7
More interestingly, there are several solutions in Z7 (using therefore only reversible chains):


They all have the same first non-W1 step:
z-chain[7]: c9n9{r7 r2} - r3c8{n9 n6} - r1n6{c7 c6} - c6n4{r1 r8} - r8n3{c6 c1} - r8n2{c1 c4} - r5n2{c4 .} ==> r7c9≠2
singles ==> r7c9=9, r2c9=3, r2c7=8, r1c7=6, r3c8=9, r2c2=1, r2c5=9, r7c8=6
whip[1]: b9n2{r9c7 .} ==> r6c7≠2
The simplest second step is a bivalue-chain[4]:
biv-chain[4]: r5n3{c6 c3} - b4n8{r5c3 r4c3} - r4c4{n8 n4} - b8n4{r8c4 r8c6} ==> r8c6≠3 ; stte
or:
biv-chain[4]: c4n4{r4 r8} - r8c6{n4 n3} - r5n3{c6 c3} - b4n8{r5c3 r4c3} ==> r4c4≠8 ; stte
or:
biv-chain[4]: r4c4{n4 n8} - b4n8{r4c3 r5c3} - r5n3{c3 c6} - r8c6{n3 n4} ==> r8c4≠4 ; stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Puzzle 8

Postby P.O. » Wed Oct 13, 2021 9:15 am

i posted this puzzle because although it is relatively difficult it has lots of 2-anti-backdoors, i found 183 of them, with only singles as resolution theory; so i tried a shortest path and found several 2-step solutions.

Code: Select all
after singles and intersections:

5     78    9     3      478    4×68    a-68   2     1             
4     18    6     5      189    2        38    7     39             
178   3     2     6789   1789  f+(18)69  4    a+69   5             
9     2     38    48     1348   7        13    5     6             
167   167   38   c+268   5     f+(168)3  9     4    c-237           
167   5     4     269    1239  f+(16)39  123   8     237           
2368  4     7     1     e23+8  e3+58     256  b6+9  b+29             
23    9     5    d2+47   6     d+34     d2+7   1     8             
268   68    1     2789   2789  e58+9     2567  3     4     

b3n6{r1c7 r3c8} - r7c9{n9 n2} - r5n2{c9 c4} - r8c6{n4 n3} - r9c6{n5 n9} - c6{r3r5r6}{n1n6n8} => r1c6 <> 6

singles and intersection:
( r7c9b9 n9 r7c8b9 n6 r3c8b3 n9 r2c9b3 n3 r2c5b2 n9 r2c2b1 n1 r2c7b3 n8 r1c7b3 n6 )
c9n2{r5 r6} => r6c7 <> 2

Code: Select all
5     78    9     3     478   48    6     2     1             
4     1     6     5     9     2     8     7     3             
78    3     2     678   178   168   4     9     5             
9     2    d3+8  a-4×8  1348  7     13    5     6             
167   67   c+38   268   5    c1-368 9     4     27             
167   5     4     269   123   1369  13    8     27             
238   4     7     1     238   358   25    6     9             
23    9     5    a2+47  6    b+34   27    1     8             
268   68    1     2789  278   589   257   3     4   

c4n4{r4 r8} - r8c6{n4 n3} - r5n3{c6 c3} - r4c3{n3 n8} => r4c4 <> 8
ste.
P.O.
 
Posts: 1764
Joined: 07 June 2021

Re: Puzzle 8

Postby totuan » Thu Oct 14, 2021 2:58 am

marek stefanik wrote:Hi totuan,
You cannot, since there are other 45 givens in the grid.

Imagine none of the 45s in r45c58 were given. Then you'd have the classic UR.
With reverse BUG the 'DP' contains all the givens and so you can't resolve its digits in the rest of the grid.

Thank you!
I see now:
- Because of in the original puzzle r5c5 = 5 then it was fixed to avoid circling 4’s & 5’s on r45c58 or Avoidable UR cannot work.
- For reverse BUG: ALL givens (not solved numbers) in original puzzle MUST include in the potential reverse BUG pattern.
I'll study more... Thanks you again.

totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam


Return to Puzzles