denis_berthier wrote:Could you write a few of these 40 chains with depth = 3 in the nrc notation?
hi Denis,
the depth count start at 0 but the links are counted from 1 so depth n gives at least a count of n+1 links; also only the rlc is output by the solver except at depth 0 where the first link is a llc; the others llc are found with the help of the 'code'.
here are four chains of depth 3: two with triplet, one without subset and the last one with singles from pair.
- Code: Select all
148 3 248 268 568 7 9 1256 1256
179 1279 29 4 569 3569 12357 123567 8
6 2789 5 238 1 2389 237 4 23
2 5689 7 168 3 689 1458 1569 14569
389 689 1 5 4 2689 2378 23679 2369
34589 568 4689 12678 6789 289 12358 123569 123569
1579 125679 269 367 567 3456 12345 8 123459
158 1568 3 9 2 4568 145 15 7
5789 4 289 378 578 1 6 2359 2359
chain n°: 6 depth: 3 candidate: 6 from cell
(((7 6 8) (3 4 5 6)))
((6 0) (7 3 7) (2 6 9))
((6 0) (6 3 4) (4 6 8 9)) c3n6{r7 r6}
((9 1 2 62) ((4 2 4) (5 6 8 9)) ((5 2 4) (6 8 9))) c2{r4r5r6}{n5n8n9}
((9 2 14) (3 6 2) (2 3 8 9)) r3n9{c2 c6}
((6 3 2 62) ((4 6 5) (6 8 9)) ((5 6 5) (2 6 8 9))) c6{r4r5r6}{n2n6n8}
c3n6{r7 r6} - c2{r4r5r6}{n5n8n9} - r3n9{c2 c6} - c6{r4r5r6}{n2n6n8} => r7c6 <> 6
when r6c3 is set to 6 a triplet (589)(89)(58) is found at c2{r4r5r6} which gives three distinct links at the same depth of 1: (5)()(5) - (8)(8)(8) - (9)(9)(). the last one becomes a rlc for this chain.
- Code: Select all
148 3 248 268 568 7 9 1256 1256
179 1279 29 4 569 3569 12357 123567 8
6 2789 5 238 1 2389 237 4 23
2 5689 7 168 3 689 1458 1569 14569
389 689 1 5 4 2689 2378 23679 2369
34589 568 4689 12678 6789 289 12358 123569 123569
1579 125679 269 367 567 345 12345 8 123459
158 1568 3 9 2 4568 145 15 7
5789 4 289 378 578 1 6 2359 2359
chain n°: 7 depth: 3 candidate: 5 from start
((6 0) (8 2 7) (1 5 6 8))
((6 0) (8 6 8) (4 5 6 8)) r8n6{c2 c6}
((9 1 2 62) ((4 6 5) (6 8 9)) ((5 6 5) (2 6 8 9)) ((6 6 5) (2 8 9))) c6{r4r5r6}{n2n8n9}
((9 2 14) (3 2 1) (2 7 8 9)) r3n9{c6 c2}
((5 3 2 62) ((4 2 4) (5 6 8 9)) ((6 2 4) (5 6 8))) c2{r4r5r6}{n5n6n8}
r8n6{c2 c6} - c6{r4r5r6}{n2n8n9} - r3n9{c6 c2} - c2{r4r5r6}{n5n6n8} => r8c2 <> 5
same analysis.
- Code: Select all
148 3 48 268 568 7 9 1256 1256
179 127 29 4 569 3569 12357 123567 8
6 2789 5 238 1 2389 237 4 23
2 5689 7 168 3 689 1458 1569 14569
39 689 1 5 4 2689 2378 23679 2369
3459 568 4689 12678 6789 289 12358 123569 123569
1579 1257 269 367 567 345 12345 8 123459
158 16 3 9 2 4568 145 15 7
5789 4 289 378 578 1 6 2359 2359
chain n°: 13 depth: 3 candidate: 3 from start
((7 0) (5 8 6) (2 3 6 7 9))
((7 0) (5 7 6) (2 3 7 8)) r5n7{c8 c7}
((7 1 1) (3 2 1) (2 7 8 9)) r3n7{c7 c2}
((9 2 2 11) ((4 2 4) (5 6 8 9)) ((5 2 4) (6 8 9))) c2n9{r3 r4r5}
((3 3 20) (5 1 4) (3 9)) r5c1{n9 n3}
r5n7{c8 c7} - r3n7{c7 c2} - c2n9{r3 r4r5} - r5c1{n9 n3} => r5c8 <> 3
no subset here.
- Code: Select all
48 3 48 2 56 7 9 156 156
19 17 2 4 569 35 357 567 8
6 79 5 8 1 39 237 4 23
2 5689 7 16 3 689 1458 1569 4569
3 689 1 5 4 2689 278 2679 269
49 568 46 167 789 28 12358 1235 1256
157 2 69 367 57 45 1345 8 13459
158 16 3 9 2 4568 145 15 7
57 4 89 37 578 1 6 2359 2359
chain n°: 40 depth: 3 candidates: (9) from start
((7 0) (6 5 5) (7 8 9))
((7 0) (6 4 5) (1 6 7)) r6n7{c5 c4}
((6 1 22) (7 4 8) (3 6 7)) [ r9c4{n7 n3} ] - r7c4{n3 n6}
((8 2 22) (9 3 7) (8 9)) [ r7c3{n6 n9} ] - r9c3{n9 n8}
((8 3 1) (6 5 5) (7 8 9)) c5n8{r9 r6}
r6n7{c5 c4} - [ r9c4{n7 n3} ] - r7c4{n3 n6} - [ r7c3{n6 n9} ] - r9c3{n9 n8} - c5n8{r9 r6} => r6c5 <> 9
written this way the chain has length six but in fact the two links in bracket are not part of the chain.
at depth 0 when r6c4 is set to 7 r7c4 become (36) and r9c4 become (3) that is a set with 2 candidates for two cells which upon analysis gives two links: 3 in r9c4 and 6 in r7c4: these two links are put in the stack of next links with the same depth of 1 and only one becomes a rlc for this chain.
it is the same analysis for the next link: a set of two candidates for two cells (9) (89) that gives two links at the same depth of 2.
so a set of length n gives always n distinct links that can become rlc for n distinct chains.
the same analysis can be applied to the forty chains of this resolution path, this puts the chain maximum length at 4.