Puzzle 51

Post puzzles for others to solve here.

Puzzle 51

Postby P.O. » Fri Aug 19, 2022 6:24 pm

from the Patterns Game, SER 8.9
Code: Select all
. . .   . 9 2   4 6 .
. . .   . 5 8   9 7 .
. . .   . . 4   5 . .
. . .   1 . .   . . 6
9 4 .   . . .   . . .
3 7 1   . . .   . . .
7 2 3   . . .   . . .
5 8 .   . . .   . . .
. . .   8 . .   . . 3

....9246.....5897......45.....1....694.......371......723......58..........8....3

( n5r4c2   n1r3c5   n3r3c8   n5r1c3   n6r5c3   n7r3c3   n7r1c4
  n8r4c3   n9r3c2   n6r3c4   n2r4c1   n3r2c4   n8r3c1   n2r3c9
  n1r1c1   n3r1c2   n8r1c9   n6r2c2   n1r2c9   n1r9c2   n4r2c1
  n2r2c3   n6r9c1 )

1      3      5      7      9      2      4      6      8               
4      6      2      3      5      8      9      7      1               
8      9      7      6      1      4      5      3      2               
2      5      8      1      347    379    37     49     6               
9      4      6      25     2378   357    12378  1258   57             
3      7      1      2459   2468   569    28     24589  459             
7      2      3      459    46     1569   168    14589  459             
5      8      49     249    23467  13679  1267   1249   479             
6      1      49     8      247    579    27     2459   3             
P.O.
 
Posts: 1762
Joined: 07 June 2021

Re: Puzzle 51

Postby RSW » Sat Aug 20, 2022 12:17 am

Code: Select all
 +---------+------------------+------------------+
 | 1 3  5  | 7    9     2     | 4     6      8   |
 | 4 6  2  | 3    5     8     | 9     7      1   |
 | 8 9  7  | 6    1     4     | 5     3      2   |
 +---------+------------------+------------------+
 | 2 5  8  | 1    347   379   | 37    49     6   |
 | 9 4  6  | 25   2378  357   | 12378 1258   57  |
 | 3 7  1  | 2459 2468  569   | 28    24589  459 |
 +---------+------------------+------------------+
 | 7 2  3  | 459  46    1569  | 168   14589  459 |
 | 5 8 a49 |a249  23467 13679 | 1267 a149-2 a479 |
 | 6 1  49 | 8    247   579   |b27    2459   3   |
 +---------+------------------+------------------+

1. (1=2497)r8c3489 - (7=2)r9c7 => -2r8c8

Code: Select all
 +---------+------------------+-------------------+
 | 1 3  5  | 7    9     2     | 4      6      8   |
 | 4 6  2  | 3    5     8     | 9      7      1   |
 | 8 9  7  | 6    1     4     | 5      3      2   |
 +---------+------------------+-------------------+
 | 2 5  8  | 1    347   379   | 37    a49     6   |
 | 9 4  6  |c25   2378  357   | 12378 a1258  *7-5 |
 | 3 7  1  | 2459 2468  569   |a28    a24589 a459 |
 +---------+------------------+-------------------+
 | 7 2  3  | 459  46    1569  | 168    14589  459 |
 | 5 8 b49 |b249  23467 13679 | 1267  b149    479 |
 | 6 1  49 | 8    247   579   | 27     2459   3   |
 +---------+------------------+-------------------+

2. (5=24891)b6p25789 - (1=492)r8c348 - (2=5)r5c4 => -5r5c9; btte
RSW
 
Posts: 670
Joined: 01 December 2018
Location: Western Canada

Re: Puzzle 51

Postby jco » Sat Aug 20, 2022 1:26 am

After basics

Code: Select all
.-------------------------------------------------------------------------.
| 1      3      5      |   7      9      2      |  4       6       8      |
| 4      6      2      |   3      5      8      |  9       7       1      |
| 8      9      7      |   6      1      4      |  5       3       2      |
|----------------------+------------------------+-------------------------|
| 2      5      8      |   1      347    379    |  37      49      6      |
| 9      4      6      |c'W25     2378   357    |  12378  b1(258) f7-5    |
| 3      7      1      |   2459   2468   569    | c28      24589   459    |
|----------------------+------------------------+-------------------------|
| 7      2      3      |   459    46     1569   |  168     14589   459    |
| 5      8      49     | V(2)49   23467  13679  |  1267 Aa(12)49  e479    |
| 6      1      49     |   8      247    579    | d27      2459    3      |
'-------------------------------------------------------------------------'

Due to (49) at r8c348, we must have (2)r8c48 = (1)r8c8, so
Code: Select all
                         (2=5)r5c4  [tags a...c']
                        /
(1)r8c8 - (1=2|5*|8)r5c8 
 ||                     \
 ||                      (8=2)r6c7 - (2=7)r9c7 - (7)r8c9 = (7)r5c9  [tags a...f]
 ||                       
(2)r8c4 - (2=5)r5c4  [tags V, W]
 ||
(2)r8c8 - (2=7)r9c7 - (7)r8c9 = (7)r5c9  [tags A,d,e,f]

=> -5 r5c9; lclste

Hidden Text: Show
My first deduction was a long contradiction chain (with coloring) proving
that (5)r5c9 is false. For while I could not find a way to show that in
written form because of (1)r5c8 (other digits in r5c8 lead quickly to -5 r5c9).
The observation that (2)r8c48 = (1)r8c8 must hold removed that obstacle.
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 51

Postby m_b_metcalf » Sat Aug 20, 2022 9:11 am

P.O. wrote:from the Patterns Game, SER 8.9

And here a variation:
Code: Select all
 . . . 9 8 4 . . .
 . . . 3 . 6 . . .
 . . 5 . . . 8 . .
 1 9 . . . . . 4 8
 7 . . . . . . . 3
 2 4 . . . . . 1 9
 . . 2 . . . 6 . .
 . . . 5 . 7 . . .
 . . . 4 2 1 . . .

...984......3.6.....5...8..19.....487.......324.....19..2...6.....5.7......421...


Mike
User avatar
m_b_metcalf
2017 Supporter
 
Posts: 13637
Joined: 15 May 2006
Location: Berlin

Re: Puzzle 51

Postby denis_berthier » Sat Aug 20, 2022 10:23 am

.
Initial puzzle, SER = 8.9. Solvable in W5.
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 1     3     5     ! 7     9     2     ! 4     6     8     !
   ! 4     6     2     ! 3     5     8     ! 9     7     1     !
   ! 8     9     7     ! 6     1     4     ! 5     3     2     !
   +-------------------+-------------------+-------------------+
   ! 2     5     8     ! 1     347   379   ! 37    49    6     !
   ! 9     4     6     ! 25    2378  357   ! 12378 1258  57    !
   ! 3     7     1     ! 2459  2468  569   ! 28    24589 459   !
   +-------------------+-------------------+-------------------+
   ! 7     2     3     ! 459   46    1569  ! 168   14589 459   !
   ! 5     8     49    ! 249   23467 13679 ! 1267  1249  479   !
   ! 6     1     49    ! 8     247   579   ! 27    2459  3     !
   +-------------------+-------------------+-------------------+
111 candidates

There's no 1-step solution with chains of reasonable length. Simplest 2-step solution:
Code: Select all
whip[7]: r8n3{c6 c5} - r8n6{c5 c7} - r8n7{c7 c9} - r9c7{n7 n2} - r8n2{c8 c4} - r5c4{n2 n5} - r5c9{n5 .} ==> r8c6≠1
hidden-single-in-a-block ==> r7c6=1
whip[8]: c4n4{r8 r6} - c9n4{r6 r8} - r8c3{n4 n9} - r8c4{n9 n2} - r9c5{n2 n7} - r8n7{c6 c7} - r4c7{n7 n3} - r4c5{n3 .} ==> r7c5≠4
stte


Mike's puzzle, SER = 7.2. Solvable in BC4 and has 2 different 1-step solutions in BC4.
Code: Select all
Resolution state after Singles and whips[1]:
   +-------------------+-------------------+-------------------+
   ! 36    12367 17    ! 9     8     4     ! 13    2357  12567 !
   ! 489   1278  1479  ! 3     5     6     ! 149   279   1247  !
   ! 3469  36    5     ! 7     1     2     ! 8     39    46    !
   +-------------------+-------------------+-------------------+
   ! 1     9     6     ! 2     3     5     ! 7     4     8     !
   ! 7     5     8     ! 1     4     9     ! 2     6     3     !
   ! 2     4     3     ! 6     7     8     ! 5     1     9     !
   +-------------------+-------------------+-------------------+
   ! 45    17    2     ! 8     9     3     ! 6     57    1457  !
   ! 3489  138   149   ! 5     6     7     ! 1349  2389  124   !
   ! 35689 3678  79    ! 4     2     1     ! 39    35789 57    !
   +-------------------+-------------------+-------------------+

Code: Select all
biv-chain[4]: r3c9{n6 n4} - r7n4{c9 c1} - b7n5{r7c1 r9c1} - b7n6{r9c1 r9c2} ==> r3c2≠6
stte

OR:
Code: Select all
biv-chain[4]: r7c1{n5 n4} - r3n4{c1 c9} - b3n6{r3c9 r1c9} - b3n5{r1c9 r1c8} ==> r7c8≠5
stte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Puzzle 51

Postby P.O. » Sat Aug 20, 2022 3:58 pm

thank you for your answers, my solution:
Code: Select all
1r8c678 => r5c9 <> 5
 r8c6=1 - r8n3{c6 c5} - b8n7{r8c5 r9c56} - r9c7{n7 n2} - b8n2{r9c5 r8c4} - r5c4{n2 n5}
 r8c7=1 - c7n6{r8 r7} - r7c5{n6 n4} - r4n4{c5 c8} - c9n4{r6 r8} - c9n7{r8 r5}
 r8c8=1 - r5n1{c8 c7} - c7n3{r5 r4} - b6n7{r4c7 r5c9}
 
( n7r5c9   n3r4c7 )

PAIR ROW: ((8 3 7) (4 9)) ((8 9 9) (4 9)) 
(((8 4 8) (2 4 9)) ((8 5 8) (2 3 4 6 7)) ((8 6 8) (1 3 6 7 9)) ((8 8 9) (1 2 4 9)))

ste.

and a solution for Mike's which of course has the original pattern:
Code: Select all
( n2r3c6   n8r7c4   n4r5c5   n5r5c2   n5r2c5   n6r8c5   n6r5c8
  n9r7c5   n9r5c6   n8r5c3   n2r5c7   n3r7c6   n5r4c6   n7r4c7
  n1r5c4   n8r6c6   n5r6c7   n7r3c4   n1r3c5   n3r4c5   n6r6c4
  n7r6c5   n6r4c3   n2r4c4   n3r6c3 )

PAIR BOX: ((1 1 1) (3 6)) ((3 2 1) (3 6)) 
(((1 2 1) (1 2 3 6 7)) ((3 1 1) (3 4 6 9)))

PAIR BOX: ((7 8 9) (5 7)) ((9 9 9) (5 7)) 
(((7 9 9) (1 4 5 7)) ((9 8 9) (3 5 7 8 9)))

X-WING ROW: n4 (3 7) (1 9)
(((2 1 1) (4 8 9)) ((2 9 3) (1 2 4 7)) ((8 1 7) (3 4 8 9)) ((8 9 9) (1 2 4)))

r7n1{c2 c9} - r8c9{n1 n2} - r2c9{n12 n7} - r9n7{c9 c23} => r7c2 <> 7

ste.
P.O.
 
Posts: 1762
Joined: 07 June 2021

Re: Puzzle 51

Postby jco » Sat Aug 20, 2022 4:21 pm

Another way (related to RSW's nice 2-stepper):

Code: Select all
.---------------------------------------------------------------------.
| 1      3      5      | 7      9      2      | 4       6      8      |
| 4      6      2      | 3      5      8      | 9       7      1      |
| 8      9      7      | 6      1      4      | 5       3      2      |
|----------------------+----------------------+-----------------------|
| 2      5      8      | 1      347    379    |b37      49     6      |
| 9      4      6      |d25     2378   357    |b12378   1258 aA7-5    |
| 3      7      1      | 2459   2468   569    | 28      24589  495    |
|----------------------+----------------------+-----------------------|
| 7      2      3      | 459    46     1569   |b168     14589  495    |
| 5      8     c49     |c249    23467  13679  |b1267 cD(2)149 B479    |
| 6      1      49     | 8      247    579    |C27      2459   3      |
'---------------------------------------------------------------------'

(7)r5c9 = (7)r8c9 - (7=2)r9c7 - (2*)r8c8 = [(7)r5c9 = (7361)4578c7 - (1=*492)r8c348 - (2=5)r5c4]

=> -5 r5c9; lclste
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 51

Postby Cenoman » Sat Aug 20, 2022 5:05 pm

Code: Select all
 +-----------------+-------------------------+------------------------+
 |  1    3    5    |  7      9       2       |  4       6       8     |
 |  4    6    2    |  3      5       8       |  9       7       1     |
 |  8    9    7    |  6      1       4       |  5       3       2     |
 +-----------------+-------------------------+------------------------+
 |  2    5    8    |  1      347     379     | D3-7     49      6     |
 |  9    4    6    | A25     2378    357     | D1238-7 C1258   A57    |
 |  3    7    1    |  2459   2468    569     |  28      24589   459   |
 +-----------------+-------------------------+------------------------+
 |  7    2    3    |  459    46      1569    |  168     14589   459   |
 |  5    8  Bb49   |Bb249    23467   13679   |  167-2  B149-2  b479   |
 |  6    1    49   |  8      47-2    579     | a27      2459    3     |
 +-----------------+-------------------------+------------------------+

1. (2=7)r9c7 - (7=492)r8c349 => -2 r8c78, r9c5
2. (7=52)r5c49 - (2=491)r8c348 - r5c8 = (13)r45c7 => -7 r45c7; lclste

... or 1. Kraken row (2)r8c4578
(2)r8c4 - (2=57)r5c49
(2)r8c5 - (2=491)r8c348 - r5c8 = (13)r45c7
(2)r8c78 - (2=7)r9c7
=> -7 r45c7; lclste

jco wrote:Due to (49) at r8c348, we must have (2)r8c48 = (1)r8c8, so
Hidden Text: Show
Code: Select all
                         (2=5)r5c4  [tags a...c']
                        /
(1)r8c8 - (1=2|5*|8)r5c8
 ||                     \
 ||                      (8=2)r6c7 - (2=7)r9c7 - (7)r8c9 = (7)r5c9  [tags a...f]
 ||                       
(2)r8c4 - (2=5)r5c4  [tags V, W]
 ||
(2)r8c8 - (2=7)r9c7 - (7)r8c9 = (7)r5c9  [tags A,d,e,f]
=> -5 r5c9; lclste

Nice finding, this DP(49)r8c348 :)
I propose a simplification of your first chain:
(1)r8c8 - (1)r5c8 = (13-7)r45c7 = (7-5)r5c9
jco wrote:(7)r5c9 = (7)r8c9 - (7=2)r9c7 - (2*)r8c8 = [(7)r5c9 = (7361)4578c7 - (1=*492)r8c348 - (2=5)r5c4]
=> -5 r5c9; lclste

I like this too ! With the same use of AHS r45c7, and 7r45c7 as a target, the AIC in your second post becomes:
(7=2)r9c7 - (2*)r8c8 = [(13)r45c7 = r5c8 - (1=*492)r8c348 - (2=57)r5c49] => -7 r45c7; lclste
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: Puzzle 51

Postby RSW » Sat Aug 20, 2022 6:52 pm

Mike's Puzzle:
Code: Select all
 +-----------------+-------+-----------------+
 | 36    127  17   | 9 8 4 |a13  a2357 12567 |
 | 489   1278 1479 | 3 5 6 |a149 a279 a1247  |
 |c49    36   5    | 7 1 2 |a8    39 ab46    |
 +-----------------+-------+-----------------+
 | 1     9    6    | 2 3 5 | 7    4    8     |
 | 7     5    8    | 1 4 9 | 2    6    3     |
 | 2     4    3    | 6 7 8 | 5    1    9     |
 +-----------------+-------+-----------------+
 |d45    17   2    | 8 9 3 | 6   *7-5  14    |
 | 3489  138  149  | 5 6 7 | 1349 2389 124   |
 | 35689 3678 79   | 4 2 1 | 39   389  57    |
 +-----------------+-------+-----------------+

Big ALS: (5=1234796)b3p1245689 - (4)r3c9 = (4)r3c1 - (4=5)r7c1 => -5r7c8; stte
RSW
 
Posts: 670
Joined: 01 December 2018
Location: Western Canada

Re: Puzzle 51

Postby Cenoman » Sat Aug 20, 2022 7:56 pm

Mike's puzzle is automorphic : central symmetry and digit permutation [1,9] [2,8] [3,7] [4,4] [5,6]
But, this time it doesn't help solving it, after basics, 4 is already placed in r5c5, and as already mentionned by other players, there are several ste one-step solutions.

Added: ... but eleven has found a nice short solution using the symmetry here

Edit: corrected the digit permutation (Thanks eleven!) and added link
Last edited by Cenoman on Thu Aug 25, 2022 7:59 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: Puzzle 51

Postby jco » Sat Aug 20, 2022 11:57 pm

Hi Cenoman,

I propose a simplification of your first chain:
(1)r8c8 - (1)r5c8 = (13-7)r45c7 = (7-5)r5c9
[\quote]
I like this too ! With the same use of AHS r45c7, and 7r45c7 as a target, the AIC in your second post becomes:
(7=2)r9c7 - (2*)r8c8 = [(13)r45c7 = r5c8 - (1=*492)r8c348 - (2=57)r5c49] => -7 r45c7; lclste


Very helpful and neat! Thanks a lot!
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 51

Postby pjb » Tue Aug 23, 2022 6:48 am

An alternative 2 stepper:

A 23 double ALS at r5c49 and r8c349, with X-Z values 7 and 2 => -2 r6c4, -5 r5c6, -5 r5c8, -4 r8c5, -9 r8c6, -4 r8c8, -9 r8c8,
Then: (2)r8c4 = (2-5)r5c4 = (5-7)r5c9 = (7)r8c9 - (7=2)r9c7 => -2 r8c78, r9c5; stte

Phil
pjb
2014 Supporter
 
Posts: 2672
Joined: 11 September 2011
Location: Sydney, Australia

Re: Puzzle 51

Postby jco » Tue Aug 23, 2022 12:27 pm

pjb wrote:An alternative 2 stepper:

A 23 double ALS at r5c49 and r8c349, with X-Z values 7 and 2 => -2 r6c4, -5 r5c6, -5 r5c8, -4 r8c5, -9 r8c6, -4 r8c8, -9 r8c8,
Then: (2)r8c4 = (2-5)r5c4 = (5-7)r5c9 = (7)r8c9 - (7=2)r9c7 => -2 r8c78, r9c5; stte

Phil

Very nice! It is interesting that if we consider the ALS version of the second move ( WXYZ-Wing(2479)r8c239,r9c7 )
and put the two group of cells together (from move 1 and move 2), it looks as a one-stepper for this "new" pattern (cells marked in the board).
Code: Select all
.---------------------------------------------------.
| 1  3  5  | 7     9      2     | 4      6      8   |
| 4  6  2  | 3     5      8     | 9      7      1   |
| 8  9  7  | 6     1      4     | 5      3      2   |
|----------+--------------------+-------------------|
| 2  5  8  | 1     347    379   | 37     49     6   |
| 9  4  6  |(25)   2378   37-5  | 12378  128-5 (57) |
| 3  7  1  | 459-2 2468   569   | 28     24589  459 |
|----------+--------------------+-------------------|
| 7  2  3  | 459   46     1569  | 168    14589  459 |
| 5  8 (49)|(249)  2367-4 1367-9| 167-2  1-249 (479)|
| 6  1  49 | 8     47-2   579   |(27)    2459   3   |
'---------------------------------------------------'

(since (2)r8c4 = (7)r8c9 to avoid triple (49) in row 8, then all those eliminations follow leading to singles to the end)
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 51

Postby Cenoman » Tue Aug 23, 2022 7:49 pm

jco wrote: [...If we] put the two groups of cells together (from move 1 and move 2), it looks as a one-stepper...

*(2=7)r9c7 - ^(7=492)r8c349* - (2=57)r5c49^ =>-2 r9c5*, r8c78* and loop eliminations^ -4 r8c58, -9 r8c68, -2r6c4, -5 r5c68; ste
That's what is called "one step and a half !" ;)
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: Puzzle 51

Postby eleven » Thu Aug 25, 2022 7:16 pm

Cenoman wrote:Mike's puzzle is automorphic : central symmetry and digit permutation [1,9] [2,8] [3,7] [4,4],[5,6]
But, this time it doesn't help solving it, after basics, 4 is already placed in r5c5, and as already mentionned by other players, there are several ste one-step solutions.

Code: Select all
+----------------------+----------------------+----------------------+
| 36     127    17     | 9      8      4      | 13    d2357   12567  |
| 489    1278   1479   | 3      5      6      | 149    279    1247   |
| 49     36     5      | 7      1      2      | 8      39     46     |
+----------------------+----------------------+----------------------+
| 1      9      6      | 2      3      5      | 7      4      8      |
| 7      5      8      | 1      4      9      | 2      6      3      |
| 2      4      3      | 6      7      8      | 5      1      9      |
+----------------------+----------------------+----------------------+
| 45     17     2      | 8      9      3      | 6     a7-5    14     |
| 3489   138    149    | 5      6      7      | 1349   2389   124    |
|c35689 d3678   79     | 4      2      1      | 39     389   b57     |
+----------------------+----------------------+----------------------+

(7=5)r7c8 - r9c9 = (5-6)r9c1 = 6r9c2 & 5r1c8 => -5r7c8, stte
eleven
 
Posts: 3173
Joined: 10 February 2008

Next

Return to Puzzles