.
SER = 8.3
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 8 249 459 ! 1 235 2359 ! 7 34569 3569 !
! 1259 3 4579 ! 257 6 259 ! 14 8 159 !
! 159 79 6 ! 3578 3578 4 ! 13 1359 2 !
+-------------------+-------------------+-------------------+
! 7 468 348 ! 9 1238 1236 ! 5 1346 1368 !
! 3569 1 3589 ! 358 4 356 ! 368 2 7 !
! 356 468 2 ! 358 1358 7 ! 13468 13469 13689 !
+-------------------+-------------------+-------------------+
! 4 278 378 ! 6 12357 1235 ! 9 135 1358 !
! 236 5 38 ! 4 9 123 ! 12368 7 1368 !
! 2369 2679 1 ! 2357 2357 8 ! 236 356 4 !
+-------------------+-------------------+-------------------+
188 candidates
The puzzle can be solved in Z5.
There's no real 1-step solution by whips(≤8)
There are however many 2-step solutions, including one in W6 that some would consider as 1-step:
whip[6]: r2n7{c4 c3} - r3c2{n7 n9} - c3n9{r2 r5} - c3n5{r5 r1} - r3c1{n5 n1} - r2c1{n1 .} ==> r2c4≠2singles ==> r9c4=2, r7c2=2, r2c1=2, r3c1=1, r3c7=3, r9c7=6, r5c7=8, r8c1=6, r5c6=6, r8c7=2
whip[1]: c4n3{r6 .} ==> r4c5≠3, r4c6≠3, r6c5≠3
whip[1]: c1n5{r6 .} ==> r5c3≠5
whip[1]: b7n8{r8c3 .} ==> r4c3≠8
whip[1]: b8n7{r9c5 .} ==> r3c5≠7
naked-pairs-in-a-column: c2{r3 r9}{n7 n9} ==> r1c2≠9stte