.
SER = 7.0
- Code: Select all
Resolution state after Singles (and whips[1]):
+----------------------+----------------------+----------------------+
! 1259 29 125 ! 7 3568 3589 ! 135689 1356 4 !
! 579 479 8 ! 4569 3456 1 ! 2 356 369 !
! 6 3 145 ! 4589 2 4589 ! 1589 7 189 !
+----------------------+----------------------+----------------------+
! 3 6 2457 ! 2459 1 24579 ! 79 8 279 !
! 1257 278 9 ! 258 58 6 ! 4 123 1237 !
! 127 2478 1247 ! 3 48 24789 ! 1679 126 5 !
+----------------------+----------------------+----------------------+
! 279 279 2367 ! 124568 34568 23458 ! 135678 12356 123678 !
! 8 1 2367 ! 256 9 235 ! 3567 4 2367 !
! 4 5 236 ! 1268 7 238 ! 1368 9 12368 !
+----------------------+----------------------+----------------------+
207 candidates
There is a totally elementary solution using only bivalue-chains[3]:
- Code: Select all
biv-chain[3]: r4c7{n7 n9} - r6n9{c7 c6} - b5n7{r6c6 r4c6} ==> r4c3≠7, r4c9≠7
biv-chain[3]: r4c9{n2 n9} - r6n9{c7 c6} - b5n7{r6c6 r4c6} ==> r4c6≠2
biv-chain[3]: r4c7{n9 n7} - b5n7{r4c6 r6c6} - r6n9{c6 c7} ==> r1c7≠9, r3c7≠9, r4c9≠9
singles ==> r4c9=2, r7c8=2
whip[1]: b7n2{r9c3 .} ==> r1c3≠2, r6c3≠2
whip[1]: b9n5{r8c7 .} ==> r1c7≠5, r3c7≠5
naked-pairs-in-a-block: b7{r7c1 r7c2}{n7 n9} ==> r8c3≠7, r7c3≠7
stte
I've a 1-step solution, but it's in B9, absurd for a puzzle in BC3:
- Code: Select all
braid[9]: b4n5{r4c3 r5c1} - r5c5{n5 n8} - r5c4{n8 n2} - r4n2{c6 c9} - c8n2{r6 r7} - r5c2{n2 n7} - r2n7{c2 c1} - r7c1{n2 n9} - r7c2{n9 .} ==> r4c3≠4
w1-tte