Motivated by P.O.'s comment
however with templates it is solved with a single combination of size 2 (8 9)
(just for fun) I applied eleven's replacement approach:
After basics
STEP 1
- Code: Select all
,-----------------------------------------------------------,
| 2 6C 3 | BD 5 4 | 79 7BC 1 |
| 5 4 68 | 1 ABD ABD | 2 3 7BC |
|*B 1 7 | 3 2 *C | 6 5 4 |BC = 89
|-------------------+-------------------+-------------------|
| ACD 5 2 | 4 ABCD 1 | 79 ABCD 3 |
| 3 ABCD 1 | 2 ABCD ABD | 4 ABCD 5 |
| ACD ABCD 4 | 5 ABCD 3 | 1 2 ABC |
|-------------------+-------------------+-------------------|
| 4 2 9 |*A 3 5 | 8 1 *D |AD = 67
| AD8 3 68 | BCD 1 2 | 5 4 A9 |
| 1 AD8 5 | BCD 4 BD | 3 A9 2 |
'-----------------------------------------------------------'
(D=B)r1c4 - (B=AD)r2c56 - (6)r2c3 = (69)b1p27 - (9)r1c89 = r2c9 - r8c9 = r9c8 - (9=D)r9c6 - (D)r78c4 = (D)r1c4
B B B
=> r1c4 = D
----
STEP 2:
- Code: Select all
,-----------------------------------------------------------,
| 2 6C 3 |/D/ 5 4 | 79 7BC 1 |
| 5 4 68 | 1 AB AB | 2 3 7C |
|*B 1 7 | 3 2 *C | 6 5 4 |BC = 89
|-------------------+-------------------+-------------------|
| ACD 5 2 | 4 ABCD 1 | 79 ABCD 3 |
| 3 ABCD 1 | 2 ABCD AB | 4 ABCD 5 |
| ACD ABCD 4 | 5 ABCD 3 | 1 2 ABC |
|-------------------+-------------------+-------------------|
| 4 2 9 |*A 3 5 | 8 1 *D |AD=67
| AD8 3 68 | BC 1 2 | 5 4 A9 |
| 1 A8 5 | BC 4 /D/ | 3 A9 2 |
'-----------------------------------------------------------'
D=7 is impossible because box 3 would be without 7. So, D=6 (A=7), r2c3=6, r8c3=8, ste (C=8, B=9)