As I can't guess P.O.'s expectation, I post two solutions, a 7-step simple one, and a one-step monster.
- Code: Select all
+---------------------+--------------------+---------------------+
| 3 5 789 | 489 6 2 | 4789 789 1 |
| 478-9 2 79-8 | 489 1 5 | 6 3 789 |
| 468-9 6-9 1 | 7 3 89 | 489 5 2 |
+---------------------+--------------------+---------------------+
| 79 3 5 | 2 4 789 | 78-9 1 6 |
| 679 679 4 | 89 5 1 | 2 789 3 |
| 1 8 2 | 3 79 6 | 5 79 4 |
+---------------------+--------------------+---------------------+
| 2 79 6 | 1 89-7 3 | 789 4 5 |
| 5 4 3 | 6 789 79 | 1 2 789 |
| 789 1 89-7 | 5 2 4 | 3 6 79 |
+---------------------+--------------------+---------------------+
1. W-Wing: (9=7)r4c1 - r4c6 = r6c5 - (7=9)r6c8 => -9 r4c7
2. L2-Wing: (8)r7c5 = r7c7 - r4c7 = (8-7)r4c6 = (7)r8c6 => -7 r7c5
3. g-Kite: (7)r1c3 = r1c78 - r2c9 = r9c9 => -7 r9c3
4. L2-Wing: (7)r2c3 = r2c9 - r9c9 = (7-8)r9c1 = (8)r9c3 => -8r2c3
5. (9=78)r12c3 - r1c8 = r5c8 - (8=79)r4c17* - (7|9=8)r4c6 - (8=9)r3c6 => -9r23c1*, -9r3c12; lcls, 3 placements
- Code: Select all
+-----------------+--------------------+---------------------+
| 3 5 79 | 489 6 2 | 4789 78 1 |
| 48 2 79 | 489 1 5 | 6 3 789 |
| 48 6 1 | 7 3 89 | 489 5 2 |
+-----------------+--------------------+---------------------+
| 79 3 5 | 2 4 789 | 78 1 6 |
| 6 79 4 | 89 5 1 | 2 789 3 |
| 1 8 2 | 3 79 6 | 5 79 4 |
+-----------------+--------------------+---------------------+
| 2 79 6 | 1 89 3 | 789 4 5 |
| 5 4 3 | 6 789 79 | 1 2 89 |
| 79 1 8 | 5 2 4 | 3 6 79 |
+-----------------+--------------------+---------------------+
6. ALS W-Wing: (9=78)r2c39 - r1c8 = r5c8 - (8=9)r5c4 => -9 r2c4; lcls, 2 placements
- Code: Select all
+-----------------+-------------------+--------------------+
| 3 5 79 | 489 6 2 | 4789 78 1 |
| 48 2 79 | 48 1 5 | 6 3 7-9 |
| 48 6 1 | 7 3 89* | 489* 5 2 |
+-----------------+-------------------+--------------------+
| 79* 3 5 | 2 4 789* | 78 1 6 |
| 6 79 4 | 89 5 1 | 2 789 3 |
| 1 8 2 | 3 79 6 | 5 79 4 |
+-----------------+-------------------+--------------------+
| 2 79 6 | 1 8 3 | 7-9 4 5 |
| 5 4 3 | 6 79 79 | 1 2 8 |
| 79* 1 8 | 5 2 4 | 3 6 79* |
+-----------------+-------------------+--------------------+
7. Sashimi SF: (9)r3c7 = r3c6 - r4c6 = r4c1 - r9c1 = (9)r9c9 => -9 r2c9, r7c7; ste
- Code: Select all
+---------------------+--------------------+---------------------+
| 3 5 789 | 489 6 2 | 4789 789 1 |
| 4789 2 789 | 489 1 5 | 6 3 89+7 |
| 4689 69 1 | 7 3 89 | 489 5 2 |
+---------------------+--------------------+---------------------+
| 79 3 5 | 2 4 789 | 789 1 6 |
| 679 679 4 | 89 5 1 | 2 789 3 |
| 1 8 2 | 3 79 6 | 5 79 4 |
+---------------------+--------------------+---------------------+
| 2 79 6 | 1 789 3 | 789 4 5 |
| 5 4 3 | 6 789 79 | 1 2 789 |
| 789 1 789 | 5 2 4 | 3 6 79 |
+---------------------+--------------------+---------------------+
- Code: Select all
- - - - - - - - - - - - -(4)r1c4 = (4-7)r1c7
/ ||
(9)r1c4 (7)r2c9 *
|| \ ||
|| (9=8)r3c6 - r4c6 = (8-7)r4c7 = r56c8 - (7)r1c8
||
|| (9=8)r5c4 - r5c8 = r1c8 - (8)r2c9
|| / ||
(9)r2c4 (7)r2c9 *
|| \ ||
|| - - - - - - - - - - - - (9)r2c9
||
|| (9)r12c4 = r3c6 - (9=6)r3c2 - (6)r5c2
|| / ||
(9)r5c4 - - - - - - - - - - - - - - (9)r5c2
||
(7)r5c2 - - - - - - - - - - - (7=9)r7c2 - (9)r7c7 = r89c9 - (9)r2c9
\ ||
(7)r7c2 (7)r2c9 *
|| ||
(7)r7c5 - r6c5 = r4c6 - (79=8)r4c47 - r7c7 = r8c9 - (8)r2c9
|| /
(7-8)r7c7 = (8)r8c9 - - - - - - - - -
=> +7 r2c9; ste