.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 9 348 378 ! 157 1457 6 ! 2 3478 134578 !
! 246 2346 1 ! 579 8 2579 ! 3457 3467 3457 !
! 2468 5 2678 ! 3 1247 127 ! 147 4678 9 !
+----------------------+----------------------+----------------------+
! 7 2348 2358 ! 15 1235 1235 ! 6 9 2345 !
! 2456 1 23569 ! 5679 23567 8 ! 3457 2347 23457 !
! 256 2369 23569 ! 4 23567 23579 ! 8 1 2357 !
+----------------------+----------------------+----------------------+
! 3 289 2589 ! 1578 157 4 ! 179 278 6 !
! 12568 268 4 ! 15678 9 1357 ! 137 2378 12378 !
! 168 7 689 ! 2 136 13 ! 1349 5 1348 !
+----------------------+----------------------+----------------------+
218 candidates
First, note there's an elementary solution in W4:
- Code: Select all
t-whip[3]: r9c6{n3 n1} - r7n1{c5 c7} - c7n9{r7 .} ==> r9c7≠3
biv-chain[4]: r4n8{c3 c2} - r4n4{c2 c9} - b9n4{r9c9 r9c7} - r9n9{c7 c3} ==> r9c3≠8
biv-chain[3]: b8n6{r8c4 r9c5} - r9c3{n6 n9} - r5n9{c3 c4} ==> r5c4≠6
hidden-single-in-a-column ==> r8c4=6
hidden-single-in-a-block ==> r7c4=8
naked-pairs-in-a-block: b8{r9c5 r9c6}{n1 n3} ==> r8c6≠3, r8c6≠1, r7c5≠1
stte
The simplest 1-step whip solution requires a whip[7]:
- Code: Select all
whip[7]: r9n9{c7 c3} - r5n9{c3 c4} - c4n6{r5 r8} - c4n8{r8 r7} - r7n1{c4 c5} - r9c6{n1 n3} - r9c5{n3 .} ==> r7c7≠9
stte
Absurd for a puzzle on the very easy side of W4