Puzzle 21

Post puzzles for others to solve here.

Puzzle 21

Postby P.O. » Mon Feb 28, 2022 6:46 pm

Code: Select all
9 . .   . . 6   2 . .
. . 1   . 8 .   . . .
. 5 .   3 . .   . . 9
7 . .   . . .   6 9 .
. 1 .   . . 8   . . .
. . .   4 . .   8 1 .
3 . .   . . 4   . . 6
. . 4   . 9 .   . . .
. 7 .   2 . .   . 5 .

9....62....1.8.....5.3....97.....69..1...8......4..81.3....4..6..4.9.....7.2...5.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: Puzzle 21

Postby jco » Mon Feb 28, 2022 8:21 pm

Code: Select all
.-----------------------------------------------------------------------------.
| 9       348     378     | 157     1457    6       | 2       3478    134578  |
| 246     2346    1       | 579     8       2579    | 3457    3467    3457    |
| 2468    5       2678    | 3       1247    127     | 147     4678    9       |
|-------------------------+-------------------------+-------------------------|
| 7       2348    2358    | 15      1235    1235    | 6       9       2345    |
| 2456    1      c23569   |d5679    23567   8       | 3457    2347    23457   |
| 256    b2369    23569   | 4       23567   23579   | 8       1       2357    |
|-------------------------+-------------------------+-------------------------|
| 3      a289     2589    |g1578   g157     4       |h17-9    278     6       |
| 12568   268     4       |e15678   9       1357    | 137     2378    12378   |
| 168     7       689     | 2      f136    f13      | 1349    5       1348    |
'-----------------------------------------------------------------------------'

1. (9)r7c2 = (9)r6c2 - (9)r5c3 = (9-6)r5c4 = (6)r8c4 - (6=31)r9c56 - (1)r7c45 = (1)r7c7 => -9 r7c7; ste

Thanks for the puzzle!
JCO
jco
 
Posts: 742
Joined: 09 June 2020

Re: Puzzle 21

Postby P.O. » Tue Mar 01, 2022 10:10 am

i have the same 1 step solution as JCO so these 2 steps plus basics:
r4n8{c3 c2} - r4n4{c2 c9} - r9n4{c9 c7} - r9n9{c7 c3} => r9c3 <> 8
r5n9{c4 c3} - r9c3{n9 n6} - b8n6{r9c5 r8c4} => r5c4 <> 6
then singles + basics
ste.
P.O.
 
Posts: 1731
Joined: 07 June 2021

Re: Puzzle 21

Postby denis_berthier » Sun Mar 06, 2022 5:27 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 9      348    378    ! 157    1457   6      ! 2      3478   134578 !
   ! 246    2346   1      ! 579    8      2579   ! 3457   3467   3457   !
   ! 2468   5      2678   ! 3      1247   127    ! 147    4678   9      !
   +----------------------+----------------------+----------------------+
   ! 7      2348   2358   ! 15     1235   1235   ! 6      9      2345   !
   ! 2456   1      23569  ! 5679   23567  8      ! 3457   2347   23457  !
   ! 256    2369   23569  ! 4      23567  23579  ! 8      1      2357   !
   +----------------------+----------------------+----------------------+
   ! 3      289    2589   ! 1578   157    4      ! 179    278    6      !
   ! 12568  268    4      ! 15678  9      1357   ! 137    2378   12378  !
   ! 168    7      689    ! 2      136    13     ! 1349   5      1348   !
   +----------------------+----------------------+----------------------+
218 candidates


First, note there's an elementary solution in W4:
Code: Select all
t-whip[3]: r9c6{n3 n1} - r7n1{c5 c7} - c7n9{r7 .} ==> r9c7≠3
biv-chain[4]: r4n8{c3 c2} - r4n4{c2 c9} - b9n4{r9c9 r9c7} - r9n9{c7 c3} ==> r9c3≠8
biv-chain[3]: b8n6{r8c4 r9c5} - r9c3{n6 n9} - r5n9{c3 c4} ==> r5c4≠6
hidden-single-in-a-column ==> r8c4=6
hidden-single-in-a-block ==> r7c4=8
naked-pairs-in-a-block: b8{r9c5 r9c6}{n1 n3} ==> r8c6≠3, r8c6≠1, r7c5≠1
stte


The simplest 1-step whip solution requires a whip[7]:
Code: Select all
whip[7]: r9n9{c7 c3} - r5n9{c3 c4} - c4n6{r5 r8} - c4n8{r8 r7} - r7n1{c4 c5} - r9c6{n1 n3} - r9c5{n3 .} ==> r7c7≠9
stte

Absurd for a puzzle on the very easy side of W4
denis_berthier
2010 Supporter
 
Posts: 4213
Joined: 19 June 2007
Location: Paris

Re: Puzzle 21

Postby Mauriès Robert » Sun Mar 06, 2022 7:53 am

Hi all,
Here is another way to solve the puzzle using the 9r5c4 which seems unavoidable.
(-9r5c4)->9r5c3->[ 9r9c7->4r9c9->4r4c2->8r4c3 ]->6r9c3->6r8c4... => -6r5c4 => r8c4=6, btte

Image
Robert
Mauriès Robert
 
Posts: 594
Joined: 07 November 2019
Location: France


Return to Puzzles