.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 2489 7 3468 ! 1 24568 2458 ! 2345 239 249 !
! 1249 12469 146 ! 24567 3 245 ! 1245 1279 8 !
! 5 12348 1348 ! 247 2478 9 ! 6 1237 1247 !
+-------------------+-------------------+-------------------+
! 1478 5 13478 ! 2346 2468 2348 ! 9 12678 12467 !
! 4789 489 2 ! 4569 1 458 ! 48 678 3 !
! 6 13489 1348 ! 2349 2489 7 ! 1248 5 124 !
+-------------------+-------------------+-------------------+
! 127 126 1567 ! 8 2579 1235 ! 123 4 1269 !
! 12478 12468 9 ! 2347 247 1234 ! 1238 12368 5 !
! 3 1248 1458 ! 2459 2459 6 ! 7 1289 129 !
+-------------------+-------------------+-------------------+
231 candidates.
The puzzle is in Z6 and in gW5.
simplest-first solution in Z6: Show z-chain[6]: r7n5{c6 c3} - c3n7{r7 r4} - c9n7{r4 r3} - r2n7{c8 c4} - b2n6{r2c4 r1c5} - c5n5{r1 .} ==> r9c4≠5
biv-chain[3]: r2n7{c8 c4} - c4n5{r2 r5} - r5n6{c4 c8} ==> r5c8≠7
singles ==> r5c1=7, r7c3=7, r9c3=5, r2c2≠6, r2c2≠9
biv-chain[3]: r8n6{c2 c8} - r5c8{n6 n8} - r9n8{c8 c2} ==> r8c2≠8
biv-chain[4]: c9n7{r4 r3} - r2n7{c8 c4} - c4n5{r2 r5} - r5n6{c4 c8} ==> r4c9≠6
singles ==> r7c9=6, r8c2=6, r7c5=9, r7c6=5,r5c4=5, r1c5=5, r2c4=6, r1c3=6,r2c8=7, r2c1=9, r4c9=7, r4c5=6, r5c8=6, r2c7=5, r6c4=9, r5c2=9, r8c6=1, r8c4=3, r4c6=3, r8c5=7, r3c4=7, r8c1=4, r9c2=8, r7c7=3, r1c8=3, r1c9=9, r9c8=9, r9c9=1, r3c8=1,r6c7=1
whip[1]: c6n2{r2 .} ==> r3c5≠2
x-wing-in-rows: n8{r3 r6}{c3 c5} ==> r4c3≠8
naked-pairs-in-a-column: c3{r2 r4}{n1 n4} ==> r6c3≠4, r3c3≠4
x-wing-in-rows: n4{r1 r5}{c6 c7} ==> r2c6≠4
naked-single ==> r2c6=2
whip[1]: r2n4{c3 .} ==> r3c2≠4
biv-chain[3]: c2n3{r6 r3} - r3n2{c2 c9} - c9n4{r3 r6} ==> r6c2≠4
stte
simplest-first solution in gW5: Show g-whip[5]: r2n7{c8 c4} - b2n6{r2c4 r1c5} - c5n5{r1 r789} - c4n5{r9 r5} - r5n6{c4 .} ==> r5c8≠7
singles ==> r5c1=7, r7c3=7, r9c3=5
whip[1]: b7n6{r8c2 .} ==> r2c2≠6
whip[1]: b4n9{r6c2 .} ==> r2c2≠9
biv-chain[3]: r8n6{c2 c8} - r5c8{n6 n8} - r9n8{c8 c2} ==> r8c2≠8
biv-chain[4]: c9n7{r4 r3} - r2n7{c8 c4} - c4n5{r2 r5} - r5n6{c4 c8} ==> r4c9≠6
singles ==> r7c9=6, r8c2=6, r7c5=9, r7c6=5, r5c4=5, r1c5=5, r2c4=6, r1c3=6, r2c8=7, r2c1=9, r4c9=7, r4c5=6, r5c8=6, r2c7=5, r6c4=9, r5c2=9, r8c6=1, r8c4=3, r4c6=3, r8c5=7, r3c4=7, r8c1=4, r9c2=8, r7c7=3, r1c8=3, r1c9=9, r9c8=9, r9c9=1, r3c8=1, r6c7=1
whip[1]: c6n2{r2 .} ==> r3c5≠2
x-wing-in-rows: n8{r3 r6}{c3 c5} ==> r4c3≠8
naked-pairs-in-a-column: c3{r2 r4}{n1 n4} ==> r6c3≠4, r3c3≠4
x-wing-in-rows: n4{r1 r5}{c6 c7} ==> r2c6≠4
naked-single ==> r2c6=2
whip[1]: r2n4{c3 .} ==> r3c2≠4
biv-chain[3]: c2n3{r6 r3} - r3n2{c2 c9} - c9n4{r3 r6} ==> r6c2≠4
stte
There doesn't seem to be a solution in 2 or 3 steps in Z6 or even in W6. However, there's one in 3 steps in gW5 (same eliminations as François's solution, obtained after a single try of the fewer steps algorithm):
g-whip[5]: r2n7{c8 c4} - b2n6{r2c4 r1c5} - c5n5{r1 r789} - c4n5{r9 r5} - r5n6{c4 .} ==> r5c8≠7singles ==> r5c1=7, r7c3=7, r9c3=5
whip[1]: b7n6{r8c2 .} ==> r2c2≠6
whip[1]: b4n9{r6c2 .} ==> r2c2≠9
biv-chain[4]: r4n7{c9 c8} - r2n7{c8 c4} - c4n5{r2 r5} - r5n6{c4 c8} ==> r4c9≠6singles ==> r7c9=6, r8c2=6, r7c5=9, r7c6=5, r5c4=5, r1c5=5, r2c4=6, r1c3=6, r2c8=7, r2c1=9, r4c9=7, r4c5=6, r5c8=6, r2c7=5, r6c4=9, r5c2=9, r8c6=1, r8c4=3, r4c6=3, r8c5=7, r3c4=7, r8c1=4, r9c2=8, r7c7=3, r1c8=3, r1c9=9, r9c8=9, r9c9=1, r3c8=1, r6c7=1
whip[1]: c6n2{r2 .} ==> r3c5≠2
biv-chain[3]: r6c9{n4 n2} - b5n2{r6c5 r4c4} - r4n4{c4 c3} ==> r6c3≠4, r6c2≠4stte