.
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 259 129 3 ! 6 12479 1279 ! 24579 2457 8 !
! 269 8 1249 ! 13479 12479 5 ! 24679 23467 23467 !
! 7 269 2459 ! 349 2489 2389 ! 1 23456 2346 !
+----------------------+----------------------+----------------------+
! 1 239 289 ! 479 4789 6 ! 247 2347 5 !
! 2568 26 7 ! 145 3 18 ! 246 9 1246 !
! 3569 4 59 ! 2 1579 179 ! 8 1367 1367 !
+----------------------+----------------------+----------------------+
! 4 1279 1289 ! 1579 125679 1279 ! 3 125678 1267 !
! 2389 5 1289 ! 1379 12679 4 ! 267 12678 1267 !
! 23 1237 6 ! 8 1257 1237 ! 2457 12457 9 !
+----------------------+----------------------+----------------------+
226 candidates.
The puzzle is in W4: Show biv-chain[4]: r9c1{n2 n3} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠2
biv-chain[4]: r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠9
biv-chain[4]: r9n4{c8 c7} - c7n5{r9 r1} - b1n5{r1c1 r3c3} - b1n4{r3c3 r2c3} ==> r2c8≠4
biv-chain[4]: c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} ==> r3c6≠2, r3c6≠9
whip[3]: b7n9{r8c3 r7c2} - c6n9{r7 r1} - r3n9{c4 .} ==> r6c3≠9
singles ==> r6c3=5, r1c1=5, r3c8=5, r9c7=5, r7c5=5, r5c4=5, r8c5=6, r9c8=4, r4c7≠4
naked-pairs-in-a-column: c7{r4 r8}{n2 n7} ==> r5c7≠2, r2c7≠7, r2c7≠2, r1c7≠7, r1c7≠2
finned-x-wing-in-columns: n6{c7 c1}{r2 r5} ==> r5c2≠6
singles ==> r5c2=2, r3c2=6
finned-x-wing-in-rows: n9{r8 r3}{c3 c4} ==> r2c4≠9
biv-chain[3]: r8n9{c3 c4} - r8n3{c4 c1} - r9c1{n3 n2} ==> r8c3≠2
whip[1]: r8n2{c9 .} ==> r7c8≠2, r7c9≠2
biv-chain[3]: c7n6{r2 r5} - c1n6{r5 r6} - c1n9{r6 r2} ==> r2c7≠9
w1-tte
P.O. wrote:5 chains (maxdepth 5) in 3 grid states for me.
As the puzzle is in W4, it makes sense to try to reduce the number of steps, by allowing slightly longer chains, of length 5 (my interpretation of "maxdepth 5" when chains are implemented by BFS.
Indeed, it's relatively easy to find a solution in 5 steps in
W4:
biv-chain[4]: r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠9, r8c1≠2
biv-chain[4]: c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} ==> r3c6≠9, r3c6≠2
whip[3]: b7n9{r8c3 r7c2} - c6n9{r7 r1} - r3n9{c4 .} ==> r6c3≠9singles ==> r6c3=5, r1c1=5, r3c8=5, r9c7=5, r7c5=5, r5c4=5, r8c5=6, r9c8=4
whip[1]: r5n4{c9 .} ==> r4c7≠4
whip[3]: c7n6{r2 r5} - r6n6{c9 c1} - c1n9{r6 .} ==> r2c7≠9singles ==> r1c7=9, r1c5=4, r4c4=4
finned-x-wing-in-columns: n6{c7 c1}{r2 r5} ==> r5c2≠6w1-tte
The last step could also be:
z-chain[3]: b1n6{r3c2 r2c1} - c7n6{r2 r5} - c2n6{r5 .} ==> r3c2≠9, r5c2≠6, r3c9≠6, r3c2≠2, r2c1≠6 with z-candidates = n6r3c2
w1-tte