Puzzle 17

Post puzzles for others to solve here.

Puzzle 17

Postby P.O. » Fri Feb 11, 2022 3:21 pm

Code: Select all
5 chains (maxdepth 5) in 3 grid states for me.

. . 3   6 . .   . . 8
. 8 .   . . 5   . . .
7 . .   . . .   1 . .
1 . .   . . 6   . . 5
. . 7   . 3 .   . 9 .
. 4 .   2 . .   8 . .
4 . .   . . .   3 . .
. 5 .   . . 4   . . .
. . 6   8 . .   . . 9

..36....8.8...5...7.....1..1....6..5..7.3..9..4.2..8..4.....3...5...4.....68....9
P.O.
 
Posts: 1763
Joined: 07 June 2021

Re: Puzzle 17

Postby jco » Fri Feb 11, 2022 5:52 pm

Code: Select all
.------------------------------------------------------------------------------.
|  259     129     3       | 6       12479   1279    | 24579   2457    8       |
|  269     8       1249    | 13479   12479   5       | 24679   23467   23467   |
|  7       269     2459    | 349     2489   d38-29   | 1       23456   2346    |
|--------------------------+-------------------------+-------------------------|
|  1       239     289     | 479     4789    6       | 247     2347    5       |
| f2568    26      7       | 145     3      e18      | 246     9       1246    |
|  3569    4       59      | 2       1579    179     | 8       1367    1367    |
|--------------------------+-------------------------+-------------------------|
|  4       1279    1289    | 1579    125679  1279    | 3       125678  1267    |
|ga38-29   5       1289    |b1379    12679   4       | 267     12678   1267    |
|  23      1237    6       | 8       1257   c1237    | 2457    12457   9       |
'------------------------------------------------------------------------------'

1. Loop (8-3)r8c1 = r8c4 - r9c6 = (3-8)r3c6 = (8)r5c6 - r5c1 = (8)r8c1 => -29 r8c1, -29 r3c6
---
Code: Select all
.------------------------------------------------------------------------------.
| b259     129     3       | 6       12479  e1279    | 24579   2457    8       |
| b269     8       1249    | 13479   12479   5       | 24679   23467   23467   |
|  7      c269    c2459    |d349    d2489    38      | 1       23456   2346    |
|--------------------------+-------------------------+-------------------------|
|  1       239     289     | 479     4789    6       | 247     2347    5       |
|  2568    26      7       | 145     3       18      | 246     9       1246    |
| a3569    4       5-9     | 2       1579   A179     | 8       1367    1367    |
|--------------------------+-------------------------+-------------------------|
|  4      g1279   g1289    | 1579    125679 f1279    | 3       125678  1267    |
|  38      5      h1289    | 1379    12679   4       | 267     12678   1267    |
|  23      1237    6       | 8       1257    1237    | 2457    12457   9       |
'------------------------------------------------------------------------------'

2. (9*)r6c6 = [(9)r6c1 = r1c12 - r3c23 = r3c45 - r1c6 =* r7c6 - r7c23 = r8c3] => -9 r6c3 [8 placements & basics]
---
Code: Select all
.--------------------------------------------------------------------.
| 5      129    3      | 6      12479  1279   | 49     27     8      |
|a29-6   8      1249   | 13479  12479  5      |e46-9   2367   23467  |
| 7      269    249    | 349    2489   38     | 1      5      2346   |
|----------------------+----------------------+----------------------|
| 1      239    289    | 479    4789   6      | 27     237    5      |
| 268    26     7      | 5      3      18     |d46     9      1246   |
|b369    4      5      | 2      179    179    | 8     c1367  c1367   |
|----------------------+----------------------+----------------------|
| 4      1279   1289   | 179    5      1279   | 3      12678  1267   |
| 38     5      1289   | 1379   6      4      | 27     1278   127    |
| 23     1237   6      | 8      127    1237   | 5      4      9      |
'--------------------------------------------------------------------'

3. (9)r2c1 = (9-6)r6c1 = (6)r6c89 - (6)r5c7 = (6)r2c7 => -6 r2c1, -9 r2c7; lclste

Thanks for the puzzle!
EDIT: I noticed a mistake in step 2 (due to a mistake in coloring) and made the correction.
Hidden Text: Show
Code: Select all
.--------------------------------------------------------.
|  9     9     -   | -       9       9'  | 9     -   -   |
|  9     -     9   | 9       9       -   | 9     -   -   |
|  -    {9.}  {9.} | 9       9       -   | -     -   -   |
|------------------+---------------------+---------------|
|  -     9     9   | 9       9       -   | -     -   -   |
|  -     -     -   | -       -       -   | -     -   -   |
|  9.    -    -9   | -       9       *9  | -     -   -   |
|------------------+---------------------+---------------|
|  -     9    9    | 9       9       9"  | -     -   -   |
|  -     -    9:   | 9       9       -   | -     -   -   |
|  -     -    -    | -       -       -   | -     -   -   |
'--------------------------------------------------------'
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 17

Postby denis_berthier » Sat Feb 12, 2022 7:52 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 259    129    3      ! 6      12479  1279   ! 24579  2457   8      !
   ! 269    8      1249   ! 13479  12479  5      ! 24679  23467  23467  !
   ! 7      269    2459   ! 349    2489   2389   ! 1      23456  2346   !
   +----------------------+----------------------+----------------------+
   ! 1      239    289    ! 479    4789   6      ! 247    2347   5      !
   ! 2568   26     7      ! 145    3      18     ! 246    9      1246   !
   ! 3569   4      59     ! 2      1579   179    ! 8      1367   1367   !
   +----------------------+----------------------+----------------------+
   ! 4      1279   1289   ! 1579   125679 1279   ! 3      125678 1267   !
   ! 2389   5      1289   ! 1379   12679  4      ! 267    12678  1267   !
   ! 23     1237   6      ! 8      1257   1237   ! 2457   12457  9      !
   +----------------------+----------------------+----------------------+
226 candidates.


The puzzle is in W4: Show
biv-chain[4]: r9c1{n2 n3} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠2
biv-chain[4]: r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠9
biv-chain[4]: r9n4{c8 c7} - c7n5{r9 r1} - b1n5{r1c1 r3c3} - b1n4{r3c3 r2c3} ==> r2c8≠4
biv-chain[4]: c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} ==> r3c6≠2, r3c6≠9
whip[3]: b7n9{r8c3 r7c2} - c6n9{r7 r1} - r3n9{c4 .} ==> r6c3≠9
singles ==> r6c3=5, r1c1=5, r3c8=5, r9c7=5, r7c5=5, r5c4=5, r8c5=6, r9c8=4, r4c7≠4
naked-pairs-in-a-column: c7{r4 r8}{n2 n7} ==> r5c7≠2, r2c7≠7, r2c7≠2, r1c7≠7, r1c7≠2
finned-x-wing-in-columns: n6{c7 c1}{r2 r5} ==> r5c2≠6
singles ==> r5c2=2, r3c2=6
finned-x-wing-in-rows: n9{r8 r3}{c3 c4} ==> r2c4≠9
biv-chain[3]: r8n9{c3 c4} - r8n3{c4 c1} - r9c1{n3 n2} ==> r8c3≠2
whip[1]: r8n2{c9 .} ==> r7c8≠2, r7c9≠2
biv-chain[3]: c7n6{r2 r5} - c1n6{r5 r6} - c1n9{r6 r2} ==> r2c7≠9
w1-tte


P.O. wrote:5 chains (maxdepth 5) in 3 grid states for me.

As the puzzle is in W4, it makes sense to try to reduce the number of steps, by allowing slightly longer chains, of length 5 (my interpretation of "maxdepth 5" when chains are implemented by BFS.
Indeed, it's relatively easy to find a solution in 5 steps in W4:

biv-chain[4]: r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} ==> r8c1≠9, r8c1≠2
biv-chain[4]: c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} ==> r3c6≠9, r3c6≠2
whip[3]: b7n9{r8c3 r7c2} - c6n9{r7 r1} - r3n9{c4 .} ==> r6c3≠9

singles ==> r6c3=5, r1c1=5, r3c8=5, r9c7=5, r7c5=5, r5c4=5, r8c5=6, r9c8=4
whip[1]: r5n4{c9 .} ==> r4c7≠4
whip[3]: c7n6{r2 r5} - r6n6{c9 c1} - c1n9{r6 .} ==> r2c7≠9
singles ==> r1c7=9, r1c5=4, r4c4=4
finned-x-wing-in-columns: n6{c7 c1}{r2 r5} ==> r5c2≠6
w1-tte

The last step could also be:
z-chain[3]: b1n6{r3c2 r2c1} - c7n6{r2 r5} - c2n6{r5 .} ==> r3c2≠9, r5c2≠6, r3c9≠6, r3c2≠2, r2c1≠6
with z-candidates = n6r3c2
w1-tte
denis_berthier
2010 Supporter
 
Posts: 4238
Joined: 19 June 2007
Location: Paris

Re: Puzzle 17

Postby P.O. » Sat Feb 12, 2022 1:12 pm

i found this puzzle interesting because its first state has no singles no intersections no subsets and no fishes and trying to shorten its path i found only two (sort of) symmetric looping chains to begin the resolution process:
c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} => r3c6 <> 2,9
r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} => r8c1 <> 2,9
then:
r6c3{n5 n9} - b7n9{r7c3r8c3 r7c2} - c6n9{r7 r1} - c7n9{r1 r2} - b1{r1c1r2c1r3c2}{n2n5n6} => r3c3 r5c1 r6c1 <> 5
singles: ( r9c8b9 n4 r8c5b8 n6 r7c5b8 n5 r9c7b9 n5 r1c1b1 n5 r3c8b3 n5 r6c3b4 n5 r5c4b5 n5 )
intersection: r4n4{c4c5} => r4c7 <> 4
c1n9{r2 r6} - r6n6{c1 c8c9} - c7n6{r5 r2} - c7n9{r2 r1} - c6n9{r1 r7} - c2n9{r7 r3} => r1c2 r2c3 r3c3 <> 9
c1n9{r2 r6} - r6n6{c1 c8c9} - c7n6{r5 r2} => r2c1 <> 6
ste.

Denis, it is a BFS algorithm, it starts with a xor relationship between two candidates or group of candidates and by convention its numbering starts at 0
Code: Select all
 a < -- xor -- > b
                 0
                 |
    (1 --------- 1 --------- 1)
     |     |     |     |     |
 (2 --- 2)   (2 --- 2)   (2 --- 2)
  |  |  |     |  |  |     |  |  |
(3-3) (3-3) (3-3) (3-3) (3-3) (3-3)   depth 3 = 4 links
-----------------------------------
P.O.
 
Posts: 1763
Joined: 07 June 2021

Re: Puzzle 17

Postby jco » Sat Feb 12, 2022 1:31 pm

After the Loop that removes 2,9 from two cells (first chain), there is a large fish

Code: Select all
.--------------------------------------------------------------------.
| 259    129    3     |  6       12479   1279 | 24579  2457    8     |
| 269    8      124-9 |  13479   12479   5    | 24679  23467   23467 |
| 7     *269   *2459  | *349    *2489    38   | 1      23456   2346  |
|---------------------+-----------------------+----------------------|
| 1     *239   *289   | *479    *4789    6    | 247    2347    5     |
| 2568   26     7     |  145     3       18   | 246    9       1246  |
| 3569   4      5-9   |  2       1579    179  | 8      1367    1367  |
|---------------------+-----------------------+----------------------|
| 4     *1279  *1289  |  1579    125679  1279 | 3      125678  1267  |
| 38     5     @1289  | *1379   *12679   4    | 267    12678   1267  |
| 23     1237   6     |  8       1257    1237 | 2457   12457   9     |
'--------------------------------------------------------------------'

Finned Franken Jellyfish (9) r348b7 \ c2345 efr8c3 => -9 r26c3
When solving the puzzle, I noticed some large fish on 9s, but did not even try to catch it.
For this puzzle, the additional elimination provided by this fish is not useful.
JCO
jco
 
Posts: 757
Joined: 09 June 2020

Re: Puzzle 17

Postby P.O. » Sat Feb 12, 2022 3:06 pm

hi JCO, it is true that there exist many varieties of fish, lot of which i am unable to spot, but if this one need some previous 9 eliminations to be found it is not in the first state of the grid.
P.O.
 
Posts: 1763
Joined: 07 June 2021

Re: Puzzle 17

Postby jco » Sat Feb 12, 2022 3:17 pm

Hi P.O..

Agreed. That fish is not available at the start.
It is available (after just 4 eliminations) right after my first move (Loop)

Loop (8-3)r8c1 = r8c4 - r9c6 = (3-8)r3c6 = (8)r5c6 - r5c1 = (8)r8c1 => -29 r8c1, -29 r3c6

or after your two chains:
c6n3{r3 r9} - r8n3{c4 c1} - c1n8{r8 r5} - c6n8{r5 r3} => r3c6 <> 2,9
r8n3{c1 c4} - c6n3{r9 r3} - c6n8{r3 r5} - c1n8{r5 r8} => r8c1 <> 2,9
JCO
jco
 
Posts: 757
Joined: 09 June 2020


Return to Puzzles