As a curiosity, an occurrence of the (general) Exocet technique can be seen in this puzzle:
- Code: Select all
+--------------------------+---------------------------+--------------------------+
| 3 12-4 128 | 9 1458 158 | 2456 7 2568 |
| 24789 T279-4 5 | 3478 6 78 | 234 348 1 |
| 1478 6 18 | 34578 134578 2 | 9 3458 58 |
+--------------------------+---------------------------+--------------------------+
| B179 1379 4 | 3567 2 15679 | 8 3569 5679 |
| 5 12379 12369 | 3678 13789 16789 | 2367 369 4 |
| B279 8 2369 | 34567 34579 5679 | 23567 1 25679 |
+--------------------------+---------------------------+--------------------------+
| 2489 249 7 | 2568 589 3 | 1 45689 5689 |
| 6 39 38-9 | 1 5789 4 | 57 2 5789 |
| 12489 5 T12-89 | 2678 789 6789 | 467 4689 3 |
+--------------------------+---------------------------+--------------------------+
(General) Exocet (1279)r46c1, r2c2, r9c3
Rationale for the general exocet property (any digit true in a base cell, can't be false in both target cells):
+1r4c1 & -1r9c3 => r9 void of 1
+2r6c1 & -2r2c2, r9c3 => +2 r2c7 & +2 r5c7; contradiction
+7r46c1 & -7r2c2 => b1 void of 7
+9r46c1 & -9r2c2, r9c3 => b1 void of 9
Exocet eliminations:
-4 r2c2, -8 r9c3 (non base digits are false in target cells)
-9 r9c3 (base digit in a target, false in its mirror node)
-4 r1c2, -9 r8c3 (locked non base digit 6 @r3c2, locked base digit 7 @r7c3, other digits of the same type in mirror node, are false.
=> lclste