thank you for your answer, your diagram makes straightforward to understand the intricacies of your solution, my solution uses two nested chains in one OR-relation:
n1r5c1 OR n9r5c1 => r1c9 <> 5 and r7c9 <> 3
ste.
n1r5c1 context:
- Code: Select all
((1 0) (5 1 4) (1 9)) n1r5c1
((1 1 1) (8 2 7) (1 2 5 7)) n1r8c2
((1 1 1) (8 2 7) (1 2 5 7)) n1r8c2
((5 2 1 11) ((9 2 7) (2 5 7)) ((9 3 7) (2 3 5 8))) n5r9c23
((2 2 1 11) ((9 2 7) (2 5 7)) ((9 3 7) (2 3 5 8))) n2r9c23
- Code: Select all
479 8 569 145679 145679 3 2 156 45
347 4567 1 45678 2 45678 3468 9 3458
2 456 3569 145689 14569 45689 3468 13568 7
489 3 289 24579 4579 1 789 2578 6
1 26 7 23569 8 569 39 4 2359
5 246 2689 234679 4679 4679 1 2378 2389
378 9 38 14678 1467 2 5 3678 348
78 1 4 56789 3 56789 6789 2678 289
6 257 2358 4789 479 4789 34789 378 1
5r1c9 => r9c23 <> 2
r1c9=5 - b6n5{r5c9 r4c8} - c5n5{r4 r3} - r2n5{c46 c2} - c2n7{r2 r9} - r9n5{c2 c3}
=> r1c9 <> 5
3r7c9 => r9c23 <> 5
r7c9=3 - r9n3{c78 c3} - r9n2{c3 c2}
=> r7c9 <> 3
n9r5c1 context:
- Code: Select all
((9 0) (5 1 4) (1 9)) n9r5c1
((3 1 9) (5 7 6) (3 9)) n3r5c7
((3 1 9) (5 7 6) (3 9)) n3r5c7
((3 2 1) (6 4 5) (2 3 4 6 7 9)) n3r6c4
- Code: Select all
47 8 569 145679 145679 3 2 156 45
347 4567 1 45678 2 45678 468 9 3458
2 456 3569 145689 14569 45689 468 13568 7
48 3 28 24579 4579 1 789 2578 6
9 126 7 256 8 56 3 4 25
5 246 268 3 4679 4679 1 278 289
1378 9 38 14678 1467 2 5 3678 348
178 1257 4 156789 3 56789 6789 2678 289
6 257 2358 45789 4579 45789 4789 2378 1
5r1c9 => r27c9 <> 3
r1c9=5 - r5c9{n5 n2} - r6n2{c89 c23} - 48r4c13 - 37r12c1
r1c9=5 - r5c9{n5 n2} - c4n2{r5 r4} - r4c3{n2 n8} - r7c3{n8 n3}
=> r1c9 <> 5
3r7c9 => r5c9 <> 2,5
r7c9=3 - r7c3{n3 n8} - r4c3{n8 n2} - c4n2{r4 r5}
r7c9=3 - b3n3{r2c9 r3c8} - c8n1{r3 r1} - c8n5{r1 r4}
=> r7c9 <> 3