PO137 ER 8.4
- Code: Select all
*--------------------------------------------------------------------*
| 7 3689 3689 | 1238 12 4 | 69 289 5 |
| 248 5 38 | 6 9 2378 | 47 1 478 |
| 24689 4689 1 | 258 257 2578 | 3 2789 4678 |
|----------------------+----------------------+----------------------|
| 189 2 4 | 589 3 5789 | 1579 6 17 |
| 3 6789 56789 | 4589 4567 1 | 4579 579 2 |
| 169 679 5679 | 2459 24567 2579 | 8 3579 1347 |
|----------------------+----------------------+----------------------|
| 4689 34689 3689 | 7 145 359 | 2 358 1368 |
| 5 3478 2 | 134 14 6 | 17 378 9 |
| 69 1 3679 | 2359 8 2359 | 567 4 367 |
*--------------------------------------------------------------------*
It's unusual to see the simplest form of Sue de Coq at the outset of an ER 8.4 puzzle, but it provides an important elimination for what follows:
Sue de Coq:
(3689)r1c23, (69)r1c7, (38)r2c3 -> -8(r2c1,r3c12),-9(r1c8)
basic continuous AIC:
(1=2)r1c5-(2=8)r1c8-(8)r23c9=(8-1)r7c9=(1)r7c5 -> -2(r1c4),-8(r3c8),-36(r7c9),-1(r8c5)
EDIT => locked set for 6 in box 7 -> r9c1=9, r7c6=9
basic AIC:
(8)r4c1=ht(589)r4c467-(1)r4c7=(1)r8c7-(1=8)r7c9-(8)r8c7=(8)r8c2 -> -8(r7c1) stte
(Thanks to Steve: the locked set that I had mentioned wasn't necessary, actually is necessary for the final AIC.
)
Nice puzzle P.O.!