thank you for your answer, i also solve the puzzle by eliminating n9 from r1c9 with two methods, first a rather complicated forcing-chain built on the first resolution state, and a second by developing the two terms of an OR relation proving in each of their context much more simply the contradiction of n9r1c9
first method:
- Code: Select all
9r1c9 => r6c1 <> 3,4,8,9
r1c9=9 - r5c9{n9 n4} - 25r89c9 - r9c8{n2 n4} - r2c8{n49 n3} - r3n3{c9 c4} - c4n5{r3 r89} - r7n5{c56 c2} - r7n3{c2 c1}
r1c9=9 - r5c9{n9 n4} - 25r89c9 - r9c8{n2 n4} - b7n4{r9c3 r8c1}
r1c9=9 - r5c9{n9 n4} - 25r89c9 - r9c8{n2 n4} - r2c8{n49 n3} - r3c9{n23 n8} - b6n8{r4c9 r6c7}
r1c9=9 - r5c9{n9 n4} - 25r89c9 - r9c8{n2 n4} - r2c8{n49 n3} - r6c8{n34 n9}
=> r1c9 <> 9
ste.
second method:
n2r4c8 OR n2r4c9 => r1c9 <> 9
ste.
n2r4c8 context:
- Code: Select all
((2 0) (4 8 6) (2 3 9)) n2r4c8
((4 1 9) (9 8 9) (2 4)) n4r9c8
((4 1 9) (9 8 9) (2 4)) n4r9c8
((4 2 7) (5 9 6) (4 9)) n4r5c9
((4 2 1) (8 1 7) (4 6 8 9)) n4r8c1
((4 2 1) (2 7 3) (4 7 8 9)) n4r2c7
((4 2 2 2) ((5 3 4) (4 7 9)) ((6 3 4) (4 8 9))) n4r56c3
((4 2 7) (5 9 6) (4 9)) n4r5c9
((4 3 7) (2 7 3) (4 7 8 9)) n4r2c7
((4 3 1 2) ((6 1 4) (3 4 8 9)) ((6 3 4) (4 8 9))) n4r6c13
((4 2 1) (8 1 7) (4 6 8 9)) n4r8c1
((6 3 10) (1 1 1) (6 8)) n6r1c1
((9 3 1 11) ((8 7 9) (1 4 9)) ((8 9 9) (4 5 9))) n9r8c79
((9 3 1 11) ((7 1 7) (3 9)) ((7 3 7) (7 9))) n9r7c13
((6 3 2 11) ((8 2 7) (5 6 8)) ((9 2 7) (5 6 7 8))) n6r89c2
((4 2 1) (2 7 3) (4 7 8 9)) n4r2c7
((7 3 10) (1 7 3) (7 8 9)) n7r1c7
((7 3 1 11) ((2 4 2) (3 6 7 8 9)) ((2 5 2) (6 7 9)) ((2 6 2) (6 7 8))) n7r2c456
((4 3 1 2) ((6 1 4) (3 4 8 9)) ((6 3 4) (4 8 9))) n4r6c13
- Code: Select all
6 4 3 89 1 2 7 5 89
2 8 5 3679 679 67 4 39 1
7 9 1 358 4 58 28 6 238
389 137 6 179 79 4 5 2 389
5 2 79 679 8 3 69 1 4
389 13 489 2 569 156 689 39 7
39 357 79 4 257 157 12 8 6
4 56 2 1568 3 1568 19 7 59
1 567 78 5678 2567 9 3 4 25
9r1c9 => r678c6 <> 1
r1c9=9 - c8n9{r2 r6} - r5c7{n9 n6} - r6c7{n69 n8} - 13r6c12
r1c9=9 - 25r89c9 - r7c7{n2 n1}
r1c9=9 - r1c4{n9 n8} - c6n8{r3 r8}
=> r1c9 <> 9
n2r4c9 context:
- Code: Select all
((2 0) (4 9 6) (2 3 8 9)) n2r4c9
((8 1 10) (6 7 6) (4 6 8 9)) n8r6c7
((3 1 10) (3 9 3) (2 3 8)) n3r3c9
((2 1 1) (3 7 3) (2 8)) n2r3c7
((8 1 2 11) ((1 9 3) (8 9)) ((3 9 3) (2 3 8))) n8r13c9
((8 1 1 11) ((4 1 4) (3 8 9)) ((4 2 4) (1 3 7 8))) n8r4c12
((3 1 2 11) ((4 8 6) (2 3 9)) ((6 8 6) (3 4 9))) n3r46c8
((8 1 10) (6 7 6) (4 6 8 9)) n8r6c7
((6 2 10) (5 7 6) (4 6 9)) n6r5c7
((2 2 9) (3 7 3) (2 8)) n2r3c7
((8 2 1) (9 3 7) (4 7 8)) n8r9c3
((6 2 1 11) ((6 5 5) (5 6 9)) ((6 6 5) (1 5 6))) n6r6c56
((8 2 2 2) ((1 9 3) (8 9)) ((3 9 3) (2 3 8))) n8r13c9
((8 2 1 2) ((4 1 4) (3 8 9)) ((4 2 4) (1 3 7 8))) n8r4c12
((3 1 10) (3 9 3) (2 3 8)) n3r3c9
((3 2 1) (2 4 2) (3 6 7 8 9)) n3r2c4
((8 2 1 31) ((3 4 2) (3 5 8)) ((3 6 2) (5 8))) n8r3c46
((5 2 1 31) ((3 4 2) (3 5 8)) ((3 6 2) (5 8))) n5r3c46
((3 2 2 2) ((4 8 6) (2 3 9)) ((6 8 6) (3 4 9))) n3r46c8
((2 1 1) (3 7 3) (2 8)) n2r3c7
((2 2 1) (9 8 9) (2 4)) n2r9c8
((2 2 1) (7 5 8) (2 5 7)) n2r7c5
((2 2 1) (9 8 9) (2 4)) n2r9c8
((2 3 1) (7 5 8) (2 5 7)) n2r7c5
((6 2 10) (5 7 6) (4 6 9)) n6r5c7
((6 3 1 2) ((6 5 5) (5 6 9)) ((6 6 5) (1 5 6))) n6r6c56
((8 2 1) (9 3 7) (4 7 8)) n8r9c3
((4 3 10) (8 1 7) (4 6 8 9)) n4r8c1
((4 3 1 11) ((9 8 9) (2 4)) ((9 9 9) (2 4 5))) n4r9c89
((4 3 2 11) ((5 3 4) (4 7 9)) ((6 3 4) (4 8 9))) n4r56c3
((8 3 1 2) ((8 4 8) (1 5 6 8)) ((8 6 8) (1 5 6 8))) n8r8c46
((8 2 1 31) ((3 4 2) (3 5 8)) ((3 6 2) (5 8))) n8r3c46
((2 3 20) (3 7 3) (2 8)) n2r3c7
- Code: Select all
68 4 3 679 1 2 79 5 89
2 68 5 3 679 67 479 49 1
7 9 1 58 4 58 2 6 3
389 1378 6 179 79 4 5 39 2
5 2 479 79 8 3 6 1 49
39 13 49 2 569 156 8 349 7
39 357 79 4 2 157 19 8 6
4 56 2 1568 3 1568 19 7 59
1 567 8 567 567 9 3 2 45
9r1c9 => r9c9 <> 4,5
r1c9=9 - r5c9{n9 n4}
r1c9=9 - r8c9{n9 n5}
=> r1c9 <> 9