Puzzle 126

Post puzzles for others to solve here.

Puzzle 126

Postby P.O. » Tue Apr 18, 2023 3:33 pm

for this puzzle i have a rather difficult one-step solution with a ordinary forcing-chain and a 'simpler' solution using the Dynamic+Dynamic Forcing Chain method.
Code: Select all
.  .  1  .  .  .  .  7  2
.  .  .  .  6  .  8  5  9
9  .  .  .  .  8  1  4  .
.  .  .  .  3  9  7  .  .
.  .  .  5  7  2  .  6  .
.  .  7  8  1  .  .  .  .
.  5  2  3  .  .  .  .  .
1  4  9  .  .  .  .  .  .
7  3  .  .  .  .  5  .  4

..1....72....6.8599....814.....397.....572.6...781.....523.....149......73....5.4

34568  68     1      49     459    345    36     7      2               
234    27     34     1247   6      1347   8      5      9               
9      267    356    27     25     8      1      4      36             
24568  1268   4568   46     3      9      7      128    158             
348    189    348    5      7      2      349    6      138             
23456  269    7      8      1      46     2349   239    35             
68     5      2      3      489    1467   69     189    1678           
1      4      9      267    258    567    236    238    3678           
7      3      68     1269   289    16     5      1289   4           
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 126

Postby Cenoman » Tue Apr 18, 2023 8:07 pm

The reasonable solution in two steps:
Code: Select all
 +------------------------+----------------------+-----------------------+
 |  3458-6  8-6    1      | b49    b459  b345    | a36     7      2      |
 |  234     27     34     |  1247   6     1347   |  8      5      9      |
 |  9      c267    356    | c27    c25    8      |  1      4      3-6    |
 +------------------------+----------------------+-----------------------+
 |  24568   1268   4568   |  46     3     9      |  7      128    158    |
 |  348     189    348    |  5      7     2      |  349    6      138    |
 |  23456   269    7      |  8      1     46     |  2349   239    35     |
 +------------------------+----------------------+-----------------------+
 |  68      5      2      |  3      489   1467   |  69     189    1678   |
 |  1       4      9      |  267    258   567    |  236    238    3678   |
 |  7       3      68     |  1269   289   16     |  5      1289   4      |
 +------------------------+----------------------+-----------------------+

1. (6=3)r1c7 - (3=495)r1c456 - (5=276)r3c245 => -6 r1c12, r3c9; lcls, 15 placements

Code: Select all
 +--------------------+------------------+-----------------+
 |  345    8    1     |  49   59   34    |  6    7    2    |
 |  234    27   34    |  1    6    347   |  8    5    9    |
 |  9      67  d56    |  27   25   8     |  1    4    3    |
 +--------------------+------------------+-----------------+
 |  456    1   d456   |e 46   3    9     |  7    2    8    |
 |  348    9    348   |  5    7    2     |  34   6    1    |
 |  2346   26   7     |  8    1    46    |  34   9    5    |
 +--------------------+------------------+-----------------+
 |  68     5    2     |  3    4   a16-7  |  9   b18   67   |
 |  1      4    9     | e67   8    5     |  2    3    67   |
 |  7      3   d68    |  29   29   16    |  5   c18   4    |
 +--------------------+------------------+-----------------+

2. (1)r7c6 = r7c8 - (1=8)r9c8 - (8=564)r349c3 - (4=67)r48c4 => -7 r7c6; ste

For one step only, I need multi-krakens:
Hidden Text: Show
Code: Select all
 +------------------------+----------------------+-----------------------+
 |  34568   68     1      |  49     459   345    |  36     7      2      |
 |  234     27     34     |  1247   6     1347   |  8      5      9      |
 |  9       267    36-5   |  27     25    8      |  1      4      36     |
 +------------------------+----------------------+-----------------------+
 |  24568   1268   4568   |  46     3     9      |  7      128    158    |
 |  348     189    348    |  5      7     2      |  349    6      138    |
 |  23456   269    7      |  8      1     46     |  2349   239    35     |
 +------------------------+----------------------+-----------------------+
 |  68      5      2      |  3      489   1467   |  69     189    1678   |
 |  1       4      9      |  267    258   567    |  236    238    3678   |
 |  7       3      68     |  1269   289   16     |  5      1289   4      |
 +------------------------+----------------------+-----------------------+

Triple Krakens:
Kraken row (6)r4c1234
(6)r4c1
(6)r4c2 - (6=72)r3c24 - r3c5 = (2)r89c5 - 2r9c4
(6)r4c3 - r9c3 = r9c46 - (6=72)r38c4 - 2r9c4
(6-4)r4c4 - (6=72)r38c4 - 2r9c4
=> {-6r4c1 => -2r9c4}

Kraken row (2)r9c458
(2)r9c4
(2)r9c5 - (2=5)r3c5 - 5r3c3
(2)r9c8 - (2=1583)b6p2369 - r3c9 = (3)r3c3 - 5r3c3
=> {-2r9c4 => -5r3c3}

Kraken row (5)r4c139
||(5-6)r4c1 => -2r9c4 => -5r3c3
||(5)r4c3
||(5)r4c9 - (5=3)r6c9 - r3c9=(3)r3c3
=> -5r3c3; ste

...in a condensed presentation:
Kraken row (6)r4c1234
Code: Select all
(6-5)r4c1 = [(5)r4c3 = r4c9 - (5=3)r6c9 - r3c9 = (3)r3c3]
 ||
(6)r4c2 - (6=72)r3c24 - r3c5 = (2)r89c5
 ||                                  \
(6)r4c3 - r9c3 = r9c46 - (6=72)r38c4 - (2)r9c4 = [(5=2)r3c5 - r9c5 *=* r9c8 - (2=1583)b6p2369 - r3c9 = (3)r3c3]
 ||                                  /
(6-4)r4c4  - (6=72)r38c4 - - - - - -

=> -5r3c3; ste
Edit: fixed typos
Last edited by Cenoman on Wed Apr 19, 2023 12:40 pm, edited 1 time in total.
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: Puzzle 126

Postby SteveG48 » Wed Apr 19, 2023 12:01 pm

Code: Select all
 *---------------------------------------------------------------------*
 | 34568  68     1      |  49     459    345    | 36     7      2      |
 | 234    27     34     |  1247   6      1347   | 8      5      9      |
 | 9     a267    36-5   | a27    a25     8      | 1      4     a36     |
 *----------------------+-----------------------+----------------------|
 |i24568 h1268 hi4568   | h46     3      9      | 7     b128  bh158    |
 | 348    189    348    |  5      7      2      | 349    6     b138    |
 | 23456  269    7      |  8      1      46     | 2349   239   b35     |
 *----------------------+-----------------------+----------------------|
 | 68     5      2      |  3      489   f1467   | 69     189    1678   |
 | 1      4      9      |eg267    258   f567    |d236   c238    3678   |
 | 7      3     g68     | f1269   289   f16     | 5     c1289   4      |
 *---------------------------------------------------------------------*


(5=(2673)*)r3c2459 - (3=185**2)b6p2369 - 2r89c8 = r7c8 - (2|*7=6)r8c4 - 6b9p3679 = 6r8c4&r9c3 - (6|*6)r4c234|**5r4c9 = (6,5)r4c13 => -5 r4c3 ; ste
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 126

Postby DonM » Thu Apr 20, 2023 5:15 am

ER=7.1
2 fairly basic AICs:
(I’m old-school: back in the day we tended to reserve Krakens and the like, if possible, for at least ER>8)
Code: Select all
 *--------------------------------------------------------------------*
 | 34568  68     1      | 49     459    345    | 36     7      2      |
 | 234    27     34     | 1247   6      1347   | 8      5      9      |
 | 9      267    356    | 27     25     8      | 1      4      36     |
 |----------------------+----------------------+----------------------|
 | 24568  1268   4568   | 46     3      9      | 7      128    158    |
 | 348    189    348    | 5      7      2      | 349    6      138    |
 | 23456  269    7      | 8      1      46     | 2349   239    35     |
 |----------------------+----------------------+----------------------|
 | 68     5      2      | 3      489    1467   | 69     189    1678   |
 | 1      4      9      | 267    258    567    | 236    238    3678   |
 | 7      3      68     | 1269   289    16     | 5      1289   4      |
 *--------------------------------------------------------------------*

(6)r7c7=hNP(68)r1c12-(5)r1c1=(5-3)r3c3=(3)r3c9 => r1c7<>3 many singles

Code: Select all
 *-----------------------------------------------------------*
 | 345   8     1     | 49    59    34    | 6     7     2     |
 | 234   27    34    | 1247  6     1347  | 8     5     9     |
 | 9     267   56    | 27    25    8     | 1     4     3     |
 |-------------------+-------------------+-------------------|
 | 456   1     456   | 46    3     9     | 7     2     8     |
 | 348   9     348   | 5     7     2     | 34    6     1     |
 | 2346  26    7     | 8     1     46    | 34    9     5     |
 |-------------------+-------------------+-------------------|
 | 68    5     2     | 3     4     167   | 9     18    67    |
 | 1     4     9     | 67    8     5     | 2     3     67    |
 | 7     3     68    | 1269  29    16    | 5     18    4     |
 *-----------------------------------------------------------*

Remembering SteveK's Quantums: based on a unique rectangle type3 (34)r56c17 Quantum almost naked pair:
(Fwiw, if one uses naked triple (167) in box 8, (6)r9c46 could be just (6)r9c6)

(6)r9c46=(6)r9c3-(6=8)r7c1-(8)r5c1=QNP(26)r6c12-(6)r6c6=(6)r4c4 => r8c4<>6 stte
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Puzzle 126

Postby P.O. » Thu Apr 20, 2023 8:23 am

thank you for your answers,
all the puzzles i have posted lately are only challenging if you are looking for a one-step solution, otherwise they are easy to solve with a few simple techniques.
so here are my two solutions: the first by a rather complicated forcing-chain and the second obtained by the Dynamic+Dynamic Forcing Chain method which, although the process to find the solution is more complex than that of ordinary forcing-chains, is much simpler.
first solution:
Code: Select all
let A be:
r3c5=2 - r3c4{n2 n7} - r3c2{n27 n6} - b3n6{r3c9 r1c7} - r7c7{n6 n9} - c8n9{r79 r6} - r6c2{n69 n2} - c7n2{r6 r8} - r8c4{n27 n6}

2r3c5 => r4c3 <> 4,5,6,8
 A - r4c4{n6 n4}
 r3c5=2 - r3c4{n2 n7} - r3c2{n27 n6} - r3c9{n6 n3} - r3c3{n36 n5}
 A - r9n6{c46 c3}
 r3c5=2 - r3c4{n2 n7} - r3c2{n27 n6} - b3n6{r3c9 r1c7} - r7c7{n6 n9} - r5n9{c7 c2} - r5n1{c2 c9} - b6n8{r5c9 r4c89}

=> r3c5 <> 2
ste.

second solution:
n5r3c3 OR n5r4c3 => r9c6 <> 1 ste.
r3c3=5 context:
Hidden Text: Show
Code: Select all
((5 0) (3 3 1) (3 5 6))                                                   n5r3c3
   ((7 1 21) (3 4 2) (2 7))                                                 n7r3c4
   ((3 1 10) (3 9 3) (3 6))                                                 n3r3c9
   ((2 1 9) (3 5 2) (2 5))                                                  n2r3c5
   ((5 1 2 2) ((4 1 4) (2 4 5 6 8)) ((6 1 4) (2 3 4 5 6)))                  n5r46c1
   ((5 1 1 2) ((1 5 2) (4 5 9)) ((1 6 2) (3 4 5)))                          n5r1c56

((7 1 21) (3 4 2) (2 7))                                                  n7r3c4
   ((7 2 1) (2 2 1) (2 7))                                                  n7r2c2
   ((7 2 2 2) ((7 6 8) (1 4 6 7)) ((8 6 8) (5 6 7)))                        n7r78c6

((3 1 10) (3 9 3) (3 6))                                                  n3r3c9
   ((6 2 10) (3 2 1) (2 6 7))                                               n6r3c2
   ((5 2 9) (6 9 6) (3 5))                                                  n5r6c9
   ((6 2 9) (1 7 3) (3 6))                                                  n6r1c7
   ((8 2 2 52) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                         n8r45c9
   ((1 2 2 52) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                         n1r45c9
   ((6 2 2 11) ((7 9 9) (1 6 7 8)) ((8 9 9) (3 6 7 8)))                     n6r78c9
   ((3 2 1 2) ((8 7 9) (2 3 6)) ((8 8 9) (2 3 8)))                          n3r8c78

((2 1 9) (3 5 2) (2 5))                                                  n2r3c5
   ((7 2 9) (3 4 2) (2 7))                                                  n7r3c4
   ((2 2 2 2) ((8 4 8) (2 6 7)) ((9 4 8) (1 2 6 9)))                        n2r89c4
   ((2 2 1 2) ((2 1 1) (2 3 4)) ((2 2 1) (2 7)))                            n2r2c12

((6 2 10) (3 2 1) (2 6 7))                                               n6r3c2
   ((3 3 9) (3 9 3) (3 6))                                                 n3r3c9
   ((8 3 9) (1 2 1) (6 8))                                                 n8r1c2
   ((6 3 5) (1 7 3) (3 6))                                                 n6r1c7

((5 2 9) (6 9 6) (3 5))                                                  n5r6c9
   ((5 3 1) (4 1 4) (2 4 5 6 8))                                           n5r4c1
   ((8 3 2 32) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                        n8r45c9
   ((1 3 2 32) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                        n1r45c9

((6 2 9) (1 7 3) (3 6))                                                  n6r1c7
   ((9 3 9) (7 7 9) (6 9))                                                 n9r7c7
   ((8 3 9) (1 2 1) (6 8))                                                 n8r1c2
   ((6 3 2 2) ((7 9 9) (1 6 7 8)) ((8 9 9) (3 6 7 8)))                     n6r78c9

((8 2 2 52) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                         n8r45c9
   ((8 3 2 13) ((7 8 9) (1 8 9)) ((8 8 9) (2 3 8)) ((9 8 9) (1 2 8 9)))    n8r789c8

((1 2 2 52) ((4 9 6) (1 5 8)) ((5 9 6) (1 3 8)))                         n1r45c9
   ((1 3 2 13) ((7 8 9) (1 8 9)) ((9 8 9) (1 2 8 9)))                      n1r79c8

Code: Select all
34    8     1     49    459   345   6     7     2             
234   7     34    14    6     134   8     5     9             
9     6     5     7     2     8     1     4     3             
5     1     46    46    3     9     7     2     8             
348   9     348   5     7     2     34    6     1             
346   2     7     8     1     46    34    39    5             
68    5     2     3     48    1467  9     18    67             
1     4     9     26    58    567   23    38    67             
7     3     68    1269  89    16    5     18    4             

1r9c6 => r4c34 <> 6
 r9c6=1 - r9c8{n1 n8} - r9c3{n8 n6}
 r9c6=1 - r9c8{n1 n8} - r7c8{n8 n3} - r7c7{n3 n2} - r7c4{n2 n6}
=> r9c6 <> 1

r4c3=5 context:
Hidden Text: Show
Code: Select all
((5 0) (4 3 4) (4 5 6 8))                                                n5r4c3
   ((5 1 7) (1 1 1) (3 4 5 6 8))                                           n5r1c1
   ((5 1 1) (6 9 6) (3 5))                                                 n5r6c9

((5 1 7) (1 1 1) (3 4 5 6 8))                                            n5r1c1
   ((3 2 41) (1 6 2) (3 4 5))                                              n3r1c6
   ((8 2 10) (1 2 1) (6 8))                                                n8r1c2
   ((5 2 3) (3 5 2) (2 5))                                                 n5r3c5
   ((5 2 1) (8 6 8) (5 6 7))                                               n5r8c6
   ((9 2 1 31) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)))                          n9r1c45
   ((4 2 1 31) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)))                          n4r1c45
   ((4 2 1 11) ((2 1 1) (2 3 4)) ((2 3 1) (3 4)))                          n4r2c13
   ((4 2 1 11) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)) ((1 6 2) (3 4 5)))        n4r1c456

((3 2 41) (1 6 2) (3 4 5))                                               n3r1c6
   ((6 3 9) (1 7 3) (3 6))                                                 n6r1c7
   ((3 3 1) (3 9 3) (3 6))                                                 n3r3c9
   ((3 3 1 2) ((2 1 1) (2 3 4)) ((2 3 1) (3 4)))                           n3r2c13

((8 2 10) (1 2 1) (6 8))                                                 n8r1c2
   ((6 3 10) (1 7 3) (3 6))                                                n6r1c7
   ((6 3 1 11) ((3 2 1) (2 6 7)) ((3 3 1) (3 5 6)))                        n6r3c23

((5 2 3) (3 5 2) (2 5))                                                  n5r3c5
   ((3 3 41) (1 6 2) (3 4 5))                                              n3r1c6
   ((5 3 1) (8 6 8) (5 6 7))                                               n5r8c6
   ((9 3 1 31) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)))                          n9r1c45
   ((4 3 1 31) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)))                          n4r1c45
   ((2 3 2 11) ((8 5 8) (2 5 8)) ((9 5 8) (2 8 9)))                        n2r89c5
   ((2 3 2 11) ((2 4 2) (1 2 4 7)) ((3 4 2) (2 7)))                        n2r23c4

((4 2 1 31) ((1 4 2) (4 9)) ((1 5 2) (4 5 9)))                          n4r1c45
   ((3 3 76) (1 6 2) (3 4 5))                                             n3r1c6
   ((4 3 1 17) ((2 1 1) (2 3 4)) ((2 3 1) (3 4)))                         n4r2c13

Code: Select all
5    8    1    49   49   3    6    7    2             
234  27   34   127  6    17   8    5    9             
9    27   6    27   5    8    1    4    3             
248  126  5    46   3    9    7    128  18           
348  19   34   5    7    2    34   6    18           
234  269  7    8    1    46   234  239  5             
6    5    2    3    48   147  9    18   178           
1    4    9    67   28   5    23   238  678           
7    3    8    169  29   16   5    12   4               

r9c6=1 - r9c8{n1 n2} - 18r4c89 => r5c9 <> 1,8
 => r9c1 <> 1
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 126

Postby SteveG48 » Thu Apr 20, 2023 2:33 pm

DonM! Long time no see. Welcome home.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 126

Postby DonM » Thu Apr 20, 2023 4:25 pm

SteveG48 wrote:DonM! Long time no see. Welcome home.


Thanks Steve. A return after, if memory serves, 9 years.
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Puzzle 126

Postby DonM » Thu Apr 20, 2023 5:05 pm

P.O. wrote:thank you for your answers,
all the puzzles i have posted lately are only challenging if you are looking for a one-step solution, otherwise they are easy to solve with a few simple techniques…


Yes, I’ve noticed that the challenge now seems to be a one-step solution posted often the same day the puzzle is posted but, unless I’m missing something, in order to do that, one has to first find the back door which is manually majorly time-consuming. So, is the routine people are using is to use a solver such as Hoduko to find the back door then manually create the one-step? Just asking for a friend. :)
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Puzzle 126

Postby P.O. » Thu Apr 20, 2023 5:38 pm

i am not a manual solver i use algorithms from start to finish, this is what i like to do, make tools, algorithms, which i then use to accomplish different tasks.
it is not necessary to explicitly search for anti-backdoors in order to build a one-step solution, the program calculates all the eliminations it can find using a set of configurable techniques, then tests them to find which ones solve the puzzle
in easy puzzles the anti-backdoors are often easily accessible
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 126

Postby DonM » Thu Apr 20, 2023 6:35 pm

P.O. wrote:it is not necessary to explicitly search for anti-backdoors in order to build a one-step solution, the program calculates all the eliminations it can find using a set of configurable techniques, then tests them to find which ones solve the puzzle. in easy puzzles the anti-backdoors are often easily accessible


But, inevitably, the program is looking for the back door.

I would say that if one is doing everything manually, finding exclusions in easy puzzles is easy, but finding back-doors is not quite so easy -or let’s say it’s easy, but tedious- and would still take time manually, presumably by testing cells with only 2 digits. Or one can use a computer solver to quickly find it and then fashion a one-step.

I understand the interest in finding one-step solutions and some of them are quite innovative. I’m just trying to figure out the routine people are following. It’s quite different from the solving we did years ago.

(Btw, I like the puzzles you put up. They have a nice variable level of challenge.)
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Puzzle 126

Postby P.O. » Thu Apr 20, 2023 7:25 pm

the program does not look for anti-backdoors, i have a procedure that looks for and finds all anti-backdoors, the program looks for eliminations and it happens that among these there are some anti-backdoors
as i said i am not a manual solver and like you i sometimes wonder how manual solvers arrive at their solution, but i have no answer to this question
only manual solvers would be able to describe the procedure they follow
regarding the one-step solution for me it's just a challenge that adds interest to the resolution of the puzzle
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 126

Postby SteveG48 » Thu Apr 20, 2023 8:07 pm

DonM wrote:
P.O. wrote:thank you for your answers,
all the puzzles i have posted lately are only challenging if you are looking for a one-step solution, otherwise they are easy to solve with a few simple techniques…


Yes, I’ve noticed that the challenge now seems to be a one-step solution posted often the same day the puzzle is posted but, unless I’m missing something, in order to do that, one has to first find the back door which is manually majorly time-consuming. So, is the routine people are using is to use a solver such as Hoduko to find the back door then manually create the one-step? Just asking for a friend. :)


That's certainly the way that I do it. I believe that what you describe was also the challenge and approach back in Dan's day, which is where I came on board. The way that I look at it is that ordinary Sudoku solving uses multiple logic steps as a means to an end. When we play the "one step" game, the logic is the end in itself.

Like you, I enjoy the level of difficulty posed by P.O.'s puzzles, but it often requires rather complex chains and star notation. I like solutions that can be written in pure bi-directional AICs following the rules posted by David P. Bird way back when, but I'm often driven to the kinds of thing I posted in this thread.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 126

Postby DonM » Thu Apr 20, 2023 10:43 pm

Just for giggles, the below was one of my last contributions years ago. You can see the difference in the emphasis at the time. I guess it was the beginning of the end of an era that spanned close to a decade. I started in the UK Eureka forum around 2006, but changed over to the U.S. based Players’ Forum around 2008 after the Eureka forum got hacked for the 2nd time losing all the valuable threads where some of the now well-known solving methods and patterns were born.

http://forum.enjoysudoku.com/suggest-a-play-sap-1-t31515.html
DonM
2013 Supporter
 
Posts: 487
Joined: 13 January 2008

Re: Puzzle 126

Postby yzfwsf » Fri Apr 21, 2023 1:08 am

Whip[14]: Supposing 5r1c5 will result in all candidates in cell r6c9 being impossible => r1c56,r3c3<>5
5#r1c5 - r3c5(5=2*) - r3c4(2=7^) - r3c2(2*7=6$) - r3c9(6=3@) - r1c7(3=6) - r7c7(6=9) - 9r5(c7=c2) - r6c2(6$9=2) - 2c7(r6=r8) - r8c4(7^2=6%) - 6r9(c46=c3) - 6r4(c2$4%3=c1) - 5c1(r1#4=r6) - r6c9(3@5=.)
stte
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: Puzzle 126

Postby totuan » Sat Apr 22, 2023 5:51 pm

Wow…, welcome back DonM! Nice to see you, after very long time (from ttt, my old nickname :D )

ttt/totuan
totuan
 
Posts: 249
Joined: 25 May 2010
Location: vietnam

Next

Return to Puzzles