Puzzle 114

Post puzzles for others to solve here.

Puzzle 114

Postby P.O. » Tue Mar 21, 2023 6:39 pm

Code: Select all
.  .  .  .  9  2  4  .  8
.  .  .  .  1  .  5  3  .
8  .  .  3  .  6  7  .  .
4  .  3  .  .  5  .  8  .
.  2  .  .  .  .  3  .  .
6  .  .  9  .  3  .  .  5
.  4  .  .  .  .  .  5  .
.  .  1  .  7  .  8  .  .
9  .  .  2  .  .  .  .  4

....924.8....1.53.8..3.67..4.3..5.8..2....3..6..9.3..5.4.....5...1.7.8..9..2....4

1357    13567   567     57      9       2       4       16      8               
27      679     24679   478     1       478     5       3       269             
8       159     2459    3       45      6       7       129     129             
4       179     3       167     26      5       1269    8       12679           
157     2       5789    14678   468     1478    3       14679   1679             
6       178     78      9       248     3       12      1247    5               
237     4       2678    168     368     189     1269    5       123679           
235     356     1       456     7       49      8       269     2369             
9       35678   5678    2       3568    18      16      167     4     
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 114

Postby SteveG48 » Tue Mar 21, 2023 11:47 pm

Code: Select all
 
 *-----------------------------------------------------------------------------*
 | 1357    13567 hk567     |e57      9       2       | 4       16      8       |
 | 27     g679     24679   |f478     1      f478     | 5       3       269     |
 | 8       159     2459    | 3      e45      6       | 7       129     129     |
 *-------------------------+-------------------------+-------------------------|
 | 4      b17-9    3       | 167     26      5       |a1269    8      a12679   |
 | 157     2     hk5789    | 14678   468     1478    | 3       14679   1679    |
 | 6      i178   hk78      | 9       248     3       | 12      1247    5       |
 *-------------------------+-------------------------+-------------------------|
 | 237     4       2678    | 168     368    c189     |b1269    5       123679  |
 | 235     356     1       |d456     7      d49      | 8       269     2369    |
 | 9      j35678  k5678    | 2       3568   j18      |j16      167     4       |
 *-----------------------------------------------------------------------------*


9r4c7 = 9*r4c2&9r7c7 - 9r7c6 = (94-5)r8c46 = (54)b2p18 - (4=78)r2c46 - (7|*9=6**)r2c2 = (6*9=578)r156c3 - 8r6c2 (186)r9c267 - (6|**6=5789)r1679c3 => -9 r4c2 ; ste
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 114

Postby yzfwsf » Wed Mar 22, 2023 2:41 am

Whip[9]: Supposing 5r1c4 will result in 6 to disappear in Box 7 => r1c4<>5
5$r1c4 - 5c5(r3=r9%) - 3r9(c5=c2#) - 8c2(r9=r6) - r6c3(8=7) - r1c3(5$7=6@) - r1c8(6=1) - 1r3(c89=c2) - 5c2(r1$9%3=r8) - 6b7(p3@8#9@5=.)
stte
yzfwsf
 
Posts: 921
Joined: 16 April 2019

Re: Puzzle 114

Postby denis_berthier » Wed Mar 22, 2023 7:07 am

.
Code: Select all
Resolution state after Singles and whips[1]:
   +----------------------+----------------------+----------------------+
   ! 1357   13567  567    ! 57     9      2      ! 4      16     8      !
   ! 27     679    24679  ! 478    1      478    ! 5      3      269    !
   ! 8      159    2459   ! 3      45     6      ! 7      129    129    !
   +----------------------+----------------------+----------------------+
   ! 4      179    3      ! 167    26     5      ! 1269   8      12679  !
   ! 157    2      5789   ! 14678  468    1478   ! 3      14679  1679   !
   ! 6      178    78     ! 9      248    3      ! 12     1247   5      !
   +----------------------+----------------------+----------------------+
   ! 237    4      2678   ! 168    368    189    ! 1269   5      123679 !
   ! 235    356    1      ! 456    7      49     ! 8      269    2369   !
   ! 9      35678  5678   ! 2      3568   18     ! 16     167    4      !
   +----------------------+----------------------+----------------------+
173 candidates.


Simplest-first solution, in Z4:
Code: Select all
biv-chain[3]: r3c5{n4 n5} - b8n5{r9c5 r8c4} - b8n4{r8c4 r8c6} ==> r2c6≠4
biv-chain[4]: r1c4{n7 n5} - b8n5{r8c4 r9c5} - r9n3{c5 c2} - b1n3{r1c2 r1c1} ==> r1c1≠7
finned-swordfish-in-columns: n7{c1 c6 c9}{r7 r2 r5} ==> r5c8≠7
biv-chain[3]: c8n7{r9 r6} - r6c3{n7 n8} - c2n8{r6 r9} ==> r9c2≠7
finned-x-wing-in-rows: n7{r9 r6}{c8 c3} ==> r5c3≠7
biv-chain[4]: r9n7{c8 c3} - r6c3{n7 n8} - c2n8{r6 r9} - r9c6{n8 n1} ==> r9c8≠1
z-chain[4]: r6n7{c3 c8} - r9c8{n7 n6} - r1c8{n6 n1} - c1n1{r1 .} ==> r5c1≠7
z-chain[4]: r1n3{c2 c1} - c1n1{r1 r5} - c1n5{r5 r8} - c4n5{r8 .} ==> r1c2≠5
finned-x-wing-in-columns: n5{c5 c2}{r3 r9} ==> r9c3≠5
hidden-pairs-in-a-row: r9{n3 n5}{c2 c5} ==> r9c5≠8, r9c5≠6, r9c2≠8, r9c2≠6
singles ==> r6c2=8, r6c3=7, r9c8=7,> r7c1=7, r2c1=2, r7c3=2, r9c3=8, r9c6=1, r9c7=6, r8c2=6
whip[1]: c7n2{r6 .} ==> r4c9≠2, r6c8≠2
whip[1]: r6n1{c8 .} ==> r4c7≠1, r4c9≠1, r5c8≠1, r5c9≠1
x-wing-in-columns: n5{c2 c5}{r3 r9} ==> r3c3≠5
naked-triplets-in-a-column: c9{r2 r4 r5}{n6 n9 n7} ==> r8c9≠9, r7c9≠9, r3c9≠9
biv-chain[3]: r2n6{c3 c9} - b3n9{r2c9 r3c8} - r3c3{n9 n4} ==> r2c3≠4
stte


1-step solutions require using W9, i.e. absurdly long chains, considering the existence of a solution in Z4:
Code: Select all
whip[9]: c5n5{r3 r9} - r9n3{c5 c2} - c2n8{r9 r6} - r6c3{n8 n7} - r1c3{n7 n6} - r1c8{n6 n1} - r3n1{c9 c2} - c2n5{r3 r8} - c2n6{r8 .} ==> r1c4≠5
stte

Code: Select all
whip[9]: c1n3{r8 r1} - c1n1{r1 r5} - c1n5{r5 r8} - c4n5{r8 r1} - c2n5{r1 r3} - c2n1{r3 r1} - r1n7{c2 c3} - r6c3{n7 n8} - b7n8{r7c3 .} ==> r9c2≠3
stte
denis_berthier
2010 Supporter
 
Posts: 4236
Joined: 19 June 2007
Location: Paris

Re: Puzzle 114

Postby P.O. » Wed Mar 22, 2023 12:16 pm

denis_berthier wrote:1-step solutions require using W9, i.e. absurdly long chains, considering the existence of a solution in Z4:

add the lengths of the techniques of your simplest-first solution and count the number of eliminations necessary to obtain the solution, this is absurdly complicated for a puzzle solved with only one elimination found by a technique of length 9.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 114

Postby denis_berthier » Wed Mar 22, 2023 12:38 pm

P.O. wrote:
denis_berthier wrote:1-step solutions require using W9, i.e. absurdly long chains, considering the existence of a solution in Z4:

add the lengths of the techniques of your simplest-first solution and count the number of eliminations necessary to obtain the solution, this is absurdly complicated for a puzzle solved with only one elimination found by a technique of length 9.


Adding the lengths is meaningless, as complexity increases exponentially with length.
denis_berthier
2010 Supporter
 
Posts: 4236
Joined: 19 June 2007
Location: Paris

Re: Puzzle 114

Postby P.O. » Wed Mar 22, 2023 1:25 pm

denis_berthier wrote:
P.O. wrote:
denis_berthier wrote:1-step solutions require using W9, i.e. absurdly long chains, considering the existence of a solution in Z4:

add the lengths of the techniques of your simplest-first solution and count the number of eliminations necessary to obtain the solution, this is absurdly complicated for a puzzle solved with only one elimination found by a technique of length 9.


Adding the lengths is meaningless, as complexity increases exponentially with length.

building a chain is a linear process, it grows one link at a time, and so does its complexity.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 114

Postby denis_berthier » Wed Mar 22, 2023 1:45 pm

.
At each step in a chain, there are several possibilities of extension => exponential growth
denis_berthier
2010 Supporter
 
Posts: 4236
Joined: 19 June 2007
Location: Paris

Re: Puzzle 114

Postby P.O. » Wed Mar 22, 2023 2:24 pm

the complexity of the chain is a property of itself, not of the number of links available to make it grow.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 114

Postby denis_berthier » Wed Mar 22, 2023 3:12 pm

.
what counts is the complexity of FINDING the chain, of course
denis_berthier
2010 Supporter
 
Posts: 4236
Joined: 19 June 2007
Location: Paris

Re: Puzzle 114

Postby P.O. » Wed Mar 22, 2023 3:34 pm

like i said you add a link one after the other and you find the chain, that the complexity of finding it.
P.O.
 
Posts: 1759
Joined: 07 June 2021

Re: Puzzle 114

Postby SteveG48 » Wed Mar 22, 2023 4:40 pm

denis_berthier wrote:.
what counts is the complexity of FINDING the chain, of course


What also counts is whether you can find a single path or are forced into addressing multiple extensions. Today's puzzle made me use two starred values to bring paths back together. Not pleasing. Hopefully someone else will do better.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 114

Postby Cenoman » Wed Mar 22, 2023 8:27 pm

My two cents:
Code: Select all
 +-------------------------+------------------------+--------------------------+
 | a1357  a13567 Ab567     | u57      9      2      |  4      16      8        |
 |  27     679     24679   |  478     1      478    |  5      3       269      |
 |  8     a159    b2459    |  3       45     6      |  7      129     129      |
 +-------------------------+------------------------+--------------------------+
 |  4     y179     3       |  167     26     5      | x1269   8       12679    |
 |  157    2      z789-5   |  14678   468    1478   |  3      14679   1679     |
 |  6     C178    B78      |  9       248    3      |  12     1247    5        |
 +-------------------------+------------------------+--------------------------+
 |  237    4       2678    |  168     368    189    | w1269   5       123679   |
 | v235   v356     1       | u456     7      49     |  8     v269    v2369     |
 |  9     D35678  E5678    |  2       3568  E18     | E16    E167     4        |
 +-------------------------+------------------------+--------------------------+

Kraken row (7)r1c1234
(7-135)b1p128 = (5)r13c3
(7)r1c3 - (7=8)r6c3 - r6c2 = r9c2 - (8=1675)r9c3678
(75)r18c4 - (5=2369)r8c1289 - r7c7 = r4c7 - r4c2 = (9)r5c3
=> -5 r5c3; ste

Added:
Hidden Text: Show
Krakenless, two steps:
1. (31)r1c12 = r1c8 - r1c1 = (1-5)r5c1 = r5c3 - r13c3 = (513)b1p128 => -7 r1c12
2. (7=8)r6c3 - r6c2 = (8-3)r9c2 = (3-5)r9c5 = r3c5 - (5=7)r1c4 => -7 r1c3; ste
Cenoman
Cenoman
 
Posts: 2997
Joined: 21 November 2016
Location: France

Re: Puzzle 114

Postby SteveG48 » Wed Mar 22, 2023 8:45 pm

At least 2 dollars' worth, I'd say.
Steve
User avatar
SteveG48
2019 Supporter
 
Posts: 4494
Joined: 08 November 2013
Location: Orlando, Florida

Re: Puzzle 114

Postby P.O. » Thu Mar 23, 2023 6:28 pm

thank you for your answers, my solution:
Code: Select all
3r9c2 => r2c2 <> 6,7,9
 r9c2=3 - r1n3{c2 c1} - c1n1{r1 r5} - c1n5{r5 r8} - r8c2{n35 n6}
 r9c2=3 - r1n3{c2 c1} - c1n1{r1 r5} - c1n5{r5 r8} - c4n5{r8 r1} - b2n7{r1c4 r2c46}
 r9c2=3 - r1n3{c2 c1} - c1n1{r1 r5} - r5n5{c1 c3} - b4n9{r5c3 r4c2}

=> r9c2 <> 3
ste.
P.O.
 
Posts: 1759
Joined: 07 June 2021


Return to Puzzles