"Potential Hardest" 9

Post puzzles for others to solve here.

"Potential Hardest" 9

Postby mith » Thu Nov 05, 2020 2:22 pm

Code: Select all
+-------+-------+-------+
| . . . | . . 1 | . . . |
| . 2 6 | 3 . . | 1 . . |
| . . . | . 4 . | . . . |
+-------+-------+-------+
| 5 . . | . . . | . . 6 |
| . 7 2 | 4 . . | . 1 . |
| . . 1 | . 8 . | . . 2 |
+-------+-------+-------+
| 9 . . | . . . | . 7 . |
| . 3 7 | 6 . . | . . 1 |
| . . . | . . 4 | . 3 . |
+-------+-------+-------+
.....1....263..1......4....5.......6.724...1...1.8...29......7..376....1.....4.3.


(As a reminder, these are puzzles which are rated 11+ by SE, but fall to some advanced technique not implemented by SE.)
mith
 
Posts: 996
Joined: 14 July 2020

Re: "Potential Hardest" 9

Postby Cenoman » Thu Nov 05, 2020 6:18 pm

Code: Select all
 +-------------------------+----------------------------+-----------------------------+
 |  37-48  4589    34589   |  25789    267-59  1        |  23-4589  5689-24  45789-3  |
 |  478    2       6       |  3        579     5789     |  1       T4589    t4589-7   | CL
 |  137-8  1589    3589    |  25789    4       267-589  |  23-589   5689-2   5789-3   |
 +-------------------------+----------------------------+-----------------------------+
 |  5      489     3489    |  1279     1237-9  237-9    |  4789-3  b489      6        |
 |  368    7       2       |  4        3569    3569     | T589-3    1        3-589    | CL
 |  36-4   469     1       |  579      8       367-59   |  4579-3  b459      2        |
 +-------------------------+----------------------------+-----------------------------+
 |  9      14568   458     |  1258     123-5   23-58    |  4568-2   7       B458      |
 |  248    3       7       |  6        259     2589     | t4589-2   2-4589   1        | CL
 |  126-8  1568    58      |  125789   127-59  4        |  5689-2   3       B589      |
 +-------------------------+----------------------------+-----------------------------+
    48                        4        59      589

Double JE (4589)r79c9, r2c8, r5c7 & (4589)r46c8, r2c9, r8c7
Eliminations:
-7 r2c9, -3r5c7, -2r8c7 (NBDs in target cells), -4 r1c8 (BD false in mirrored target cell)
-2 r13c8, r79c7, -3 r13c9, r46c7 (NBDs in mirror nodes where another NBD is locked)
-589 r5c9, -4589 r8c8 (True BDs in cells in sight of all four base cells)
-4589 r1c7, -589 r3c7 (True BDs in cells in sight of all four target cells)
-48 r1c1, -8r39c1, -4r6c1, -59 r19c5, -9r4c5, -5r7c5, -589 r3c6, -9r4c6, -59 r6c6, -58 r7c6
(True BDs in non "S-cells" in cover houses)

note: BD = Base Digit, NBD = Non Base Digit

After these eliminations and basics:
Code: Select all
 +----------------------+-----------------------+------------------------+
 |  37    4589   3489   |  25789   267    1     |  23     5689   45789   |
 |  478   2      6      |  3      c579    589   |  1      4589   4589    |
 |  1     589    389    |  25789   4     a26-7  |  23     5689   5789    |
 +----------------------+-----------------------+------------------------+
 |  5     489    3489   |  1279    1237   237   |  4789   489    6       |
 |  68    7      2      |  4      c569    59    |  589    1      3       |
 |  36    49     1      |  579     8     b36    |  4579   459    2       |
 +----------------------+-----------------------+------------------------+
 |  9     16     458    |  1258    123    23    |  4568   7      458     |
 |  48    3      7      |  6      c59     589   |  4589   2      1       |
 |  2     16     58     |  15789   17     4     |  5689   3      589     |
 +----------------------+-----------------------+------------------------+

(6)r3c6 = r6c6 - (6=597)r258c5 => -7 r3c6; lclste

Added:
Puzzle solved by the eliminations -589 r5c9, -4589 r8c8 (True BDs in cells in sight of all four base cells) =>+3r5c9, +2r8c8,
followed by (7=5692)r1258c5-(2=3)r1c7-r1c1=(3-6)r6c1=r5c1-(6=597)r258c5 =>-7r23c6; lclste
Cenoman
Cenoman
 
Posts: 3002
Joined: 21 November 2016
Location: France


Return to Puzzles