Hi yzfwsf and SpAce,
SpAce wrote:Thanks for sharing this.
I add my thanks to SpAce's
A minor comment about the exocet pattern identification:
+8r3c13 -> -8 r3c6 -> +8r1c6, so why not write for digit 8, the same as for digit 7: '8 is a locked member, so no need to check for cover houses' ?
Once the exocet pattern is proved, simple rationales (including contradiction inferences) are suitable to me, for a valid puzzle solution:
1) -25 r1c6 (non base digits in target cell)
2) 8 is a false base digit:
+8r3c13 -> -8 r3c689 -> +8r1c6; therefore -8r9c2 -> (+8r4c2 -> -8r4c9) And (+8r9c78 -> -8r7c9); contradiction (c9 void of 8) => -8 r3c13, -r1c6, r9c2
3) 7 can be true only in target r9c2:
+7r3c3 -> -7r12c2 -> +7r9c2; => -7 r1c6
4) 6 can't be true in target r1c6
+6r3c13 -> -6r3c89 -> +6r1c8; => -6 r1c6 then +9r1c6 (True base digit), +9r3c13, -9r9c2; ste
Otherwise, above moves 1. & 2. and one AIC solve the puzzle:
e.g. after -8 r3c13, -r1c6, r9c2, the following AIC proves that 6 is a true base digit, false in target r1c6.
- Code: Select all
+----------------------------+-------------------------+------------------------+
| 3459-6 g4789-6 34579-6 | 5679 2 679 | 789 678 1 |
| 59-6 g789-6 2 | 5679 5679 1 | 789 3 4 |
|ha69 1 h679 | 3 4 8 | 5 27-6 b29-6 |
+----------------------------+-------------------------+------------------------+
| 13459 49 3459 | 2 1579 579 | 6 145 8 |
| 145689 2 45689 | 14569 1569 3 | 149 145 7 |
| 7 469 4569 | 14569 8 569 | c12349 1245 c239 |
+----------------------------+-------------------------+------------------------+
| 468 3 4678 | 1567 1567 2567 | d1247 9 26 |
| 469 5 4679 | 8 13679 2679 | d12347 d12467 236 |
| 2 f679 1 | 679 3679 4 | e378 e678 5 |
+----------------------------+-------------------------+------------------------+
(6=9)r3c1 - r3c9 = (9-32)r6c79 = (2-147)b9p145 = r9c78 - r9c2 = r12c2 - (7=96)r3c13 => -6 r3c89, r1c123, r2c12; => +6 r1c8; -6 r1c6, +6r9c2 (True base digit); lclste