"Potential Hardest" 11

Post puzzles for others to solve here.

"Potential Hardest" 11

Postby mith » Thu Nov 26, 2020 9:14 pm

Code: Select all
+-------+-------+-------+
| . . . | . . . | . . . |
| 1 . . | . 4 . | 6 . . |
| . . . | 2 . 3 | . . . |
+-------+-------+-------+
| . . 1 | . . . | 4 . 6 |
| . 5 . | . . . | . 3 . |
| 6 . 8 | . . . | . . 9 |
+-------+-------+-------+
| . 2 . | . . 5 | . 7 . |
| . . 4 | . 1 . | 9 . 8 |
| . . . | . 8 . | . . . |
+-------+-------+-------+
.........1...4.6.....2.3.....1...4.6.5.....3.6.8.....9.2...5.7...4.1.9.8....8....


(As a reminder, these are puzzles which are rated 11+ by SE, but fall to some advanced technique not implemented by SE.)

This one is easily solvable manually.
mith
 
Posts: 996
Joined: 14 July 2020

Re: "Potential Hardest" 11

Postby Cenoman » Fri Nov 27, 2020 10:04 am

Manually, scattered clues suggest to search for MSLS.
Five columns contain givens for five digits (14689), so:
Code: Select all
 +-----------------------------+----------------------------+--------------------------+
 | <234579   4689-37 <235679   |  1689-57 <5679    1689-7   | <23578   489-25 <23457   | 2357
 |  1        3789     2357-9   |  5789     4       789      |  6       2589    2357    |
 | <4579     4689-7  <5679     |  2       <5679    3        | <1578    1489-5 <1457    | 57
 +-----------------------------+----------------------------+--------------------------+
 |  237-9    379      1        |  35789    2357-9  789      |  4       258     6       |
 | <2479     5       <279      |  14689-7 <2679    14689-7  | <1278    3      <127     | 27
 |  6        347      8        |  13457    2357    147      |  257-1   125     9       |
 +-----------------------------+----------------------------+--------------------------+
 |  8        2       <369      |  469-3   <369     5        | <13      7      <134     | 3
 |  357      367      4        |  367      1       267      |  9       256     8       |
 |  357-9    1        357-69   |  34679    8       24679    |  235     2456    235-4   |
 +-----------------------------+----------------------------+--------------------------+
    49                69                   69                  18              14

MSLS:
19 cell truths: r135c13579, r7c3579
19 links: 49c1, 69c3, 69c5, 18c7, 14c9, 2357r1, 57r3,c27r5, 3r7
20 eliminations: -9 r49c1, -9 r2c3, -69 r9c3, -9 r4c5, -1 r6c7, -4 r9c9, -37 r1c2, -57 r1c4, -7r1c6, -25 r1c8, -7 r3c2, -5 r3c8, -7 r5c46, -3 r7c4; lclste
Cenoman
Cenoman
 
Posts: 2975
Joined: 21 November 2016
Location: France

Re: "Potential Hardest" 11

Postby mith » Fri Nov 27, 2020 2:00 pm

Yep :)

[edit]Looked at your too quickly and got the wrong equivalence![/edit]

Equivalently: r24689c1357 (14 digits from 14689) contains the same digits as r1357c2468 (7 digits from 2357) + one extra set of 1-9; the remaining empty cells in each must be from the opposite set. (You need to place 9 digits from the first set into the 9 empty cells of the second, and 11 digits from the second set into the 9 empty cells of the first. Or you can use the formula I posted everywhere and just know for a 5x5x5 and 4x4x4 partition you need 21 digits, and 14+7=21. :))

Another option (which is what I was going for with the morph I chose): r2468c13579 (which contains 13 digits from 14689) contains the same digits as r13579c2468 (which contains 7 digits from 2357), so the remaining empty cells in each must be from the opposite set. (Equivalent to an MSLS 16.)
mith
 
Posts: 996
Joined: 14 July 2020


Return to Puzzles