Being inspired by a recent exercise, I wonder if the concept of vulnerable
pairs as part of POM can be extended to vulnerable triplets or even
quads. I didn't found any reference on POM vulnerable triples. Nor in
this neither in the EUREKA forum.
[edit: this statement is wrong, see e.g. link in the thread on collection of advanced methods]
I explored this variance a little bit.
After some search I finally found an example:
- Code: Select all
.68.....5
.9.1.8.47
.1...46..
2.19..8..
...4.....
.8.2.7.9.
.3...1.8.
....29...
.298.....
068000005090108047010004600201900800000400000080207090030001080000029000029800000
with solution:
468732915592168347317594628271953864953486172684217593735641289846329751129875436
After some hidden singles and pointing pairs:
- Code: Select all
+---------------------+---------------------+----------------------+
| 4 6 8 | 37 37 2 | 9 1 5 |
| 5 9 2 | 1 6 8 | 3 4 7 |
| 37 1 37 | 5 9 4 | 6 2 8 |
+---------------------+---------------------+----------------------+
| 2 457 1 | 9 35 356 | 8 3567 346 |
| 9 57 3567 | 4 8 356 | 1 3567 2 |
| 36 8 3456 | 2 1 7 | 45 9 346 |
+---------------------+---------------------+----------------------+
| 67 3 45 | 67 45 1 | 2 8 9 |
| 8 457 4567 | 367 2 9 | 457 35 1 |
| 1 2 9 | 8 3457 35 | 457 356 346 |
+---------------------+---------------------+----------------------+
The next most easy step would be an xyz-wing, but instead I follow POM.
Looking for patterns of single digits, the only reduction possibility
is for digit 5:
pattern for digit 5
- Code: Select all
+------+------+------+------+--------+------+------+------+------+
|X |X |X |X |X |X |X |X |X |
+------+------+------+------+--------+------+------+------+------+
|X |X |X |X |X |X |X |X |X |
+------+------+------+------+--------+------+------+------+------+
|X |X |X |X |X |X |X |X |X |
+------+------+------+------+--------+------+------+------+------+
|X |ab |X |X |c |defg |X |h |X |
+------+------+------+------+--------+------+------+------+------+
|X |cde |f |X |X |abh |X |g |X |
+------+------+------+------+--------+------+------+------+------+
|X |X |gh |X |X |X |abcdef|X |X |
+------+------+------+------+--------+------+------+------+------+
|X |X |acd |X |befgh |X |X |X |X |
+------+------+------+------+--------+------+------+------+------+
|X |fgh |be |X |X |X | |acd |X |
+------+------+------+------+--------+------+------+------+------+
|X |X |X |X |ad |c |gh |bef |X |
+------+------+------+------+--------+------+------+------+------+
There are 8 patterns for candidate 5 (abcdefg). cell [87] is not part
of any of these 8 patterns, so <5>r8c7
As here are no further single digit pattern recution possibilities,
I generated the POM merge grid:
- Code: Select all
| 4 | 6 | 8 | 3(abcd) | 3(efghijk) | 2 | 9 | 1 | 5
| . | . | . | 7(ab) | 7(cdefg) | . | . | . | .
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 5 | 9 | 2 | 1 | 6 | 8 | 3 | 4 | 7
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 3(abcefgh) | 1 | 3(dijk) | 5 | 9 | 4 | 6 | 2 | 8
| 7(cde) | 7(abfg) | . | . | . | . | . | . |
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 2 | 4(abc) | 1 | 9 | 3(a) | 3(befi) | 8 | 3(gj)5(h) | 3(cdhk)
| . | 5(ab)7(acf) | . | . | 5(c) | 5(defg)6(abc) | . | 6(de)7(bdeg) | 4(d)6(fg)
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 9 | 5(cde) | 3(abe) | 4 | 8 | 3(cdghjk) | 1 | 3(fi)5(g) | 2
| . | 7(bdg) | 5(f)6(a)7(e) | . | . | 5(abh)6(defg) | . | 6(bc)7(acf) | .
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 3(dijk) | 8 | 3(cfgh)4(d) | 2 | 1 | 7 | 4(a) | 9 | 3(abe)
| 6(bdf) | . | 5(gh)6(ceg) | . | . | . | 5(abcdef) | . | 4(bc)6(a)
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 6(aceg) | 3 | 4(b) | 6(bdf) | 4(acd) | 1 | 2 | 8 | 9
| 7(abfg) | . | 5(acd) | 7(cde) | 5(befgh) | . | . | . | .
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 8 | 4(d) | 4(ac)5(be) | 3(efghijk) | 2 | 9 | 4(b) | 3(abcd) | 1
| . | 5(fgh)7(e) | 6(bdf)7(cd) | 6(aceg)7(fg) | . | . | 7(ab) | 5(acd) | .
| ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ---------- | ----------
| 1 | 2 | 9 | 8 | 3(bcd)4(b) | 3(a) | 4(cd)5(gh) | 3(ehk) | 3(fgij)
| . | . | . | . | 5(ad)7(ab) | 5(c) | 7(cdefg) | 5(bef)6(afg) | 4(a)6(bcde)
and the pattern IDs are:
- Code: Select all
3 = abcdefghijk
4 = abcd
5 = abcdefgh
6 = abcdefg
7 = abcdefg
There are lots of vulnerable pairs, but only a few lead to some pattern
reduction and to two candidate eliminations:
vulnerable pair for digit 4 in [42] [75]
pattern 5b can be eliminated in [42], [56], [75] and [83]
vulnerable pair for digit 4 in [42] [97]
patterns 7c and 7f can be eliminated in [42], [97], [15], [31]c only,
[33]f only, [58], [71]f only, [74]c only, [83]c only, and [84]f only.
vulnerable pair for digit 5 in [67] and [7][5]
pattern 4a can be eliminated in [42], [67], [75], [83], and [99]
There is no longer any 4 in [67] and in [99]; hence candidate 4 can be
canceled in the candidate grid.
vulnerable pair for digit 6 in [61] [84]
patterns 3ijk can be eliminated in [15], [33], [46]i, [48]j, [49]k,
[56]jk, [58]i, [61], [84], and [99]ij
vulnerable pair for digit 7 in [48] [71]
pattern 6e can be eliminated in [48], [56], [63], [71], [84], and [99]
After these reduction steps the merge grid looks like this:
- Code: Select all
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
4 | 6 | 8 || 3(abcd) | 3(efgh) | 2 || 9 | 1 | 5
| | || 7(ab) | 7(deg) | || | |
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
5 | 9 | 2 || 1 | 6 | 8 || 3 | 4 | 7
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
3(abcefgh) | 1 | 3(d) || 5 | 9 | 4 || 6 | 2 | 8
7(de) | | 7(abg) || | | || | |
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
2 | 4(bc) | 1 || 9 | 3(a) | 3(bef) || 8 | 3(g)5(h) | 3(cdh)
| 5(a)7(a) | || | 5(c) | 5(defg)6(abc) || | 6(d)7(bdeg) | 4(d)6(fg)
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
9 | 5(cde) | 3(abe)5(f) || 4 | 8 | 3(cdgh) || 1 | 3(f)5(g) | 2
| 7(bdg) | 6(a)7(e) || | | 5(ah)T6(dfg) || | 6(bc)7(a) |
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
3(d) | 8 | 3(cfgh)4(d) || 2 | 1 | 7 || 4() | 9 | 3(abe)
6(bdf) | | 5(gh)6(cg) || | | || 5(acdef) | | 4(bc)6(a)
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
6(acg) | 3 | 4(b) || 6(bdf) | 4(cd) | 1 || 2 | 8 | 9
7(abg) | | 5(acd) || 7(de) | 5(efgh) | || | |
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
8 | 4(d) | 4(c)5(e) || 3(efgh) | 2 | 9 || 4(b) | 3(abcd) | 1
| 5(fgh)7(e) | 6(bdf)7(d) ||T6(acg)7(g) | | || 7(ab) | 5(acd) |
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
1 | 2 | 9 || 8 | 3(bcd)4(b) | 3(a) || 4(cd) | 3(eh)5(ef) | 3(fg)4()
| | || | 5(ad)7(ab) | 5(c) || 5(gh)7(deg) | 6(afg) | T6(bcd)
--------- + --------- + --------- ++ --------- + --------- + --------- ++ --------- + --------- + ---------
With remaining patterns:
- Code: Select all
3 = abcdefgh
4 = bcd
5 = acdefgh
6 = abcdfg
7 = abdeg
Now, the cells [56], [84] and [99] build a vulnerable triplet for
candidate 6. These three cells show together all remaining patterns for digit
6, so this digit must be in at least one of the three cells. Any pattern of
another digit that claims all these cells can be eliminated. Pattern 3g
claims all three cells, and can be excluded in [15], [31], [48], [56],
[63], [84], [99]. Candidate 3 can be eliminated in [48]
At this point I did not find any further reductions based on vulnerable
cell pairs, triplets or quads. But in the candidate view further
reductions can be made:
- Code: Select all
+--------------------------+--------------------------+--------------------------+
| 4 6 8 | 37 37 2 | 9 1 5 |
| 5 9 2 | 1 6 8 | 3 4 7 |
| 37 1 37 | 5 9 4 | 6 2 8 |
+--------------------------+--------------------------+--------------------------+
| 2 457 1 | 9 35 356 | 8 567 346 |
| 9 57 3567 | 4 8 356 | 1 3567 2 |
| 36 8 3456 | 2 1 7 | 5 9 346 |
+--------------------------+--------------------------+--------------------------+
| 67 3 45 | 67 45 1 | 2 8 9 |
| 8 457 4567 | 367 2 9 | 47 35 1 |
| 1 2 9 | 8 3457 35 | 457 356 36 |
+--------------------------+--------------------------+--------------------------+