Polyglot (8.5 skfr)

Post puzzles for others to solve here.

Polyglot (8.5 skfr)

Postby marek stefanik » Thu Dec 09, 2021 10:01 am

Code: Select all
   +---------+---------+---------+
   | .  .  1 | .  7  . | .  .  . |
   | .  .  . | 4  .  8 | .  6  . |
   | 7  .  . | .  .  . | 2  .  3 |
   +---------+---------+---------+
   | .  9  . | .  .  . | .  .  1 |
   | 6  .  7 | .  5  . | .  .  . |
   | .  .  . | 2  .  3 | 9  .  . |
   +---------+---------+---------+
   | .  .  . | .  .  1 | .  8  . |
   | .  4  . | .  .  . | 5  .  9 |
   | 2  .  3 | 8  .  . | .  .  . |
   +---------+---------+---------+
..1.7.......4.8.6.7.....2.3.9......16.7.5.......2.39.......1.8..4....5.92.38.....

A puzzle that despite its high rating does not require any chains at all. :)
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Polyglot (8.5 skfr)

Postby eleven » Thu Dec 09, 2021 4:56 pm

Nice.
E.g.: r2c7 cannot be 7, then r2c5 cannot be 2, ste.
[Added:] even easier: r2c5 cannot be 12, ste.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Polyglot (8.5 skfr)

Postby AnotherLife » Thu Dec 09, 2021 8:34 pm

My solution is based on the symmetry of the puzzle and the uniqueness of its solution. The sudoku remains valid if make the following transmutation of the givens (and the values): 1-1, 2-2, 3-3, 4-6, 5-4, 6-5, 7-9, 8-7, 9-8. We have the following correspondence between the blocks: b1-b6, b6-b8, b8-b1, b2-b4, b4-b9, b9-b2, b3-b5, b5-b7, b7-b3. If r2c3=2 then r5c9=2 and r8c6=2, or else the solution will not be unique, but r2c3 and r5c9 cannot be 2 simultaneously, so r2c3<>2, r5c9<>2, and r8c6<>2. Similarly, r2c5<>1, r5c2<>1, and r8c8<>1, ste.

Thanks for the puzzle, Marek.
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia

Re: Polyglot (8.5 skfr)

Postby eleven » Thu Dec 09, 2021 10:26 pm

For those, who are not familiar with this symmetry:

You can perform the equivalence operations
- move the bands down (cyclically, i.e. band 1->2, 2->3, 3->1),
- and the stacks left (stack 3->2, 2->1, 1->3).
Code: Select all
   +---------+---------+---------+  +---------+---------+---------+
   | .  .  1 | .  7  . | .  .  . |  | .  .  1 | .  8  . | .  .  . |
   | .  .  . | 4  x  8 | .  6  . |  | .  .  . | 5  .  9 | .  4  . |
   | 7  .  . | .  .  . | 2  .  3 |  | 8  .  . | .  .  . | 2  .  3 |
   +---------+---------+---------+  +---------+---------+---------+
   | .  9  . | .  .  . | .  .  1 |  | .  7  . | .  .  . | .  .  1 |
   | 6  y  7 | .  5  . | .  .  . |  | 4  .  8 | .  6  . | .  .  . |
   | .  .  . | 2  .  3 | 9  .  . |  | .  .  . | 2  .  3 | 7  .  . |
   +---------+---------+---------+  +---------+---------+---------+
   | .  .  . | .  .  1 | .  8  . |  | .  .  . | .  .  1 | .  9  . |
   | .  4  . | .  .  . | 5  z  9 |  | .  5  . | .  .  . | 6  .  7 |
   | 2  .  3 | 8  .  . | .  .  . |  | 2  .  3 | 9  .  . | .  .  . |
   +---------+---------+---------+  +---------+---------+---------+

If then you change the digits after the cycles (465) and (798) (1,2,3 remain the same), you get the original puzzle again here (each 1 keeps its place, each 4 becomes 6 and so on), with the same solution, if the puzzle is unique.
In other words, the boxes change cyclically with the box numbers (168),(249),(357), and the digits with (1),(2),(3),(465),(789), e.g. box 3 with 623, becomes box 5 with 523.

This symmetry is called Jumpimg Diagonals (or Block symmetry).

Then, for any digit in a cell of the solution this transformation must be true too (the transformed puzzle has the same solution), i.e. if you have a digit a in cell x, there must be the transformed digit b in the transformed cell y.

E.g. if r2c5=9, then r5c2 must be 7, and r9c8 must be 8.
1r2c5 implies 1 in r5c2, but this would kill the two possble 1's in box 5.
2r2c5 implies 2 in r5c2, but this would kill all 3 possible 2's in box 1.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Polyglot (8.5 skfr)

Postby jovi_al01 » Fri Dec 10, 2021 5:02 am

after getting a few nudges from shye, i managed to solve this! what a wonderful idea :)
User avatar
jovi_al01
 
Posts: 102
Joined: 26 July 2021

Re: Polyglot (8.5 skfr)

Postby shye » Fri Dec 10, 2021 12:13 pm

i missed the simpler finds (lc's of 123s) in my initial solve and instead found hidden 23 pairs in rows and columns 258 via symmetry, but the joy of working out why the grid would be non-unique if not positionally symmetrical makes this one of my favorite puzzles in a while, super clever!
User avatar
shye
 
Posts: 332
Joined: 12 June 2021

Re: Polyglot (8.5 skfr)

Postby marek stefanik » Sat Dec 11, 2021 11:45 am

Thanks to everyone for solving it, especially to eleven for his very nice explanation.

As a bonus, here is a slightly harder (one non-basic step for me) puzzle that emerged during the construction:
..1..2.34.6..7.8.9...........2.36..1.8.9.7.5...........35..1..27.8.4..9..........

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021

Re: Polyglot (8.5 skfr)

Postby eleven » Sat Dec 11, 2021 10:26 pm

Took me 4 steps. Nice puzzle anyway.
Code: Select all
+-------------------------+-------------------------+-------------------------+
| 589     579     1       | 568     5689    2       | 567     3       4       |
| 2345    6       34      | 1345    7       345     | 8      b12      9       |
| 234589  24579   3479    | 134568 a15689   34589   | 567-12 b1267    567     |
+-------------------------+-------------------------+-------------------------+
| 459     4579    2       | 458     3       6       | 479     478     1       |
| 1346    8       346     | 9      b12      7       | 2346    5       36      |
| 134569  14579   34679   | 458-12 b1258    458     | 234679  24678   3678    |
+-------------------------+-------------------------+-------------------------+
| 469     3       5       | 678     689     1       | 467     4678    2       |
| 7       12      8       | 2356    4       35      | 1356    9       356     |
| 469-12  1249    469     | 235678  25689   3589    | 134567  14678   35678   |
+-------------------------+-------------------------+-------------------------+

1r3c5 = r56c5,r23c8 => -1r3c7
2r3c2 = r89c2,r23c8 => -2r3c7
Code: Select all
+----------------------------+-------------------------+-------------------------+
|   589      579     1       | 568     5689    2       | 567     3       4       |
|   2345     6      f34      | 1345    7       345     | 8       12      9       |
|   234589  e4579    3479    | 134568  5689    34589   | 567     12      567     |
+----------------------------+-------------------------+-------------------------+
|   459     d4579    2       | 458     3       6       | 479     478     1       |
|gca1346     8     gc346     | 9      b12      7       |b2346    5      f36      |
|  h34569-1 d4579  g 34679   | 458     12      458     | 234679  4678    3678    |
+----------------------------+-------------------------+-------------------------+
|   469      3       5       | 678     689     1       | 467     4678    2       |
|   7        12      8       | 2356    4       35      | 1356    9       356     |
|   469      12      469     | 235678  5689    3589    | 134567  4678    35678   |
+---------------------------+-------------------------+-------------------------+

1r5c1 = (12-4)r5c57 = r5c13 - r46c2 = r3c2 - (4=3)r2c3,r5c9 - r56c3,r5c1 = 3r6c1 => -1r6c1
Code: Select all
+----------------------+----------------------+----------------------+
| 8      579    1      | 56     569    2      | 567    3      4      |
| 45-3   6     c34     | 1      7     c345    | 8      2      9      |
| 2      4579   3479   |a34568  5689   34589  | 567    1      567    |
+----------------------+----------------------+----------------------+
| 45     457    2      | 458    3      6      | 9      478    1      |
| 1      8      346    | 9      2      7      | 346    5      36     |
|a34569  4579   34679  | 458    1      458    | 2      4678   3678   |
+----------------------+----------------------+----------------------+
| 469    3      5      | 7      689    1      | 46     468    2      |
| 7      2      8      |b356    4     b35     | 1      9      356    |
| 469    1      469    | 2      5689   3589   | 34567  4678   35678  |
+----------------------+----------------------+----------------------+

3r6c1,r3c4 = 35r8c46 - (5=34)r2c36 => -3r2c1, bte
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Polyglot (8.5 skfr)

Postby AnotherLife » Sun Dec 12, 2021 11:03 am

My solution is based on the symmetry of the puzzle and the uniqueness of its solution like before, I also used some hidden subsets.
Code: Select all
.----------------------.-----------------------.-----------------------.
| 589     579    1     | 568     5689   2      | 567     3      4      |
| 2345    6      34    | 1345    7      345    | 8       12     9      |
| 234589  24579  3479  | 134568  15689  34589  | 567-12  12-67  567    |
:----------------------+-----------------------+-----------------------:
| 459     4579   2     | 458     3       6     | 479     478    1      |
| 1346    8      346   | 9       12      7     | 2346    5      36     |
| 134569  14579  34679 | 12458   1258    458   | 234679  4678-2 3678   |
:----------------------+-----------------------+-----------------------:
| 469     3       5    | 678     689     1     | 467     4678   2      |
| 7       12      8    | 2356    4       35    | 1356    9      356    |
| 46912   1249   469   | 235678  25689   3589  | 134567  4678-1 35678  |
'----------------------'-----------------------'-----------------------'

Firstly, there are two possibilities:
1. r2c8=1 => r2c1=2 => r5c7=2 (symmetry) => r3c7<>2 => r3c8=2
2. r2c8=2 => r2c4=1 => r8c7=1 (symmetry) => r3c7<>1 => r3c8=1
So (12) is a hidden pair in b3 => (12) is also a hidden pair in b5 and b7.

Code: Select all
.----------------------.----------------------.---------------------.
| 589     579   1      | 568     5689  2      | 567     3     4     |
| 2345    6     34     | 1345    7     345    | 8       12    9     |
| 234589  4579  3479   | 134568  5689  4589-3 | 567     12    567   |
:----------------------+----------------------+---------------------:
| 459     4579  2      | 458     3     6      | 479     478   1     |
| 146-3   8     346    | 9       12    7      | 246-3   5     36    |
| 134569  4579  34679  | 458     12    458    | 234679  4678  3678  |
:----------------------+----------------------+---------------------:
| 469     3     5      | 678     689   1      | 467     4678  2     |
| 7       12    8      | 2356    4     35     | 1356    9     356   |
| 469     12    469    | 235678  5689  589-3  | 134567  4678  35678 |
'----------------------'----------------------'---------------------'

Secondly, there are two possibilities:
1. r2c3=3 => r8c6=3 (symmetry) => -3 r39c6
2. r2c3=4 => r8c6=5 (symmetry) => r2c6=3 => -3 r39c6
So r3c6<>3 and r9c6<>3 (symmetry => -3 r36c3, r69c9)

Similarly:
1. r2c3=3 => r5c9=3 (symmetry) => -3 r5c17
2. r2c3=4 => r5c9=6 (symmetry) => r5c3=3 => -3 r5c17
So r5c1<>3 and r5c7<>3 (symmetry => -3 r2c14, r8c47)

Code: Select all
.--------------------.---------------------.--------------------.
| 589     579   1    | 568      5689  2    | 567     3     4    |
| 245     6     34   | 145      7     345  | 8       12    9    |
| 23-4589 4579  479  | 13-4568  5689  4589 | 567     12    567  |
:--------------------+---------------------+--------------------:
| 459     4579  2    | 458      3     6    | 479     478   1    |
| 146     8     346  | 9        12    7    | 246     5     36   |
| 134569  4579  4679 | 458      12    458  | 234679  4678  678  |
:--------------------+---------------------+--------------------:
| 469     3     5    | 678      689   1    | 467     4678  2    |
| 7       12    8    | 256      4     35   | 156     9     356  |
| 469     12    469  | 235678   5689  589  | 134567  4678  5678 |
'--------------------'---------------------'--------------------'

Now we have a hidden triple (123) in r3 (r6 and r9), and after some basic steps we come to a sequence of singles.

P.S. Marek, thanks for the puzzle. This is a rare case of a puzzle with SER 9.5 that is solvable by simple logical means.
Bogdan
AnotherLife
 
Posts: 192
Joined: 07 January 2021
Location: Moscow, Russia

Re: Polyglot (8.5 skfr)

Postby eleven » Sun Dec 12, 2021 9:05 pm

Ah yes ! How could i miss that ?
Either r2c3,r6c9,r8c6 must be 3 or (they are 4,6,5 and) 3r2c6,r6c3,r8c9.
eleven
 
Posts: 3174
Joined: 10 February 2008

Re: Polyglot (8.5 skfr)

Postby marek stefanik » Mon Dec 13, 2021 1:47 pm

Thanks for the solves, mine was the same as Bogdan's.

Marek
marek stefanik
 
Posts: 360
Joined: 05 May 2021


Return to Puzzles

cron