Once you progress to this:
- Code: Select all
*-----------------------------------------------------------*
| 9 37 23 | 27 6 1 | 8 5 4 |
| 8 17 12 | 257 24 45 | 9 6 3 |
| 6 5 4 | 9 38 38 | 1 2 7 |
|-------------------+-------------------+-------------------|
| 37 8 6 | 4 9 2 | 5 37 1 |
| 1 2 9 | 3 5 7 | 4 8 6 |
| 5 4 37 | 8 1 6 | 37 9 2 |
|-------------------+-------------------+-------------------|
| 2 9 137 | 15 34 345 | 6 1347 8 |
| 347 6 5 | 12 2348 348 | 37 1347 9 |
| 34 13 8 | 6 7 9 | 2 134 5 |
*-----------------------------------------------------------*
There is a coloring oportunity on 7s.
If two and only two cells in a group have 7s as candidates, then those two cells form a "conjugate pair". One of the cells must be 7 and the other must not be a 7. The trick is to figure out which is which.
Start at r4c1 and label conjugate pairs of 7s alternately A and B, like this:
- Code: Select all
*-----------------------------------------------------------*
| 9 37 23 | 27 6 1 | 8 5 4 |
| 8 17 12 | 257 24 45 | 9 6 3 |
| 6 5 4 | 9 38 38 | 1 2 7 |
|-------------------+-------------------+-------------------|
| 37A 8 6 | 4 9 2 | 5 37B 1 |
| 1 2 9 | 3 5 7 | 4 8 6 |
| 5 4 37B | 8 1 6 | 37A 9 2 |
|-------------------+-------------------+-------------------|
| 2 9 137A | 15 34 345 | 6 1347B 8 |
| 347B 6 5 | 12 2348 348 | 37B 1347 9 |
| 34 13 8 | 6 7 9 | 2 134 5 |
*-----------------------------------------------------------*
The conjugate pairs are:
r4c1(A) and r4c8(B) in row 4
r4c8(B) and r6c7(A) in box 6
r6c7(A) and r6c3(B) in row 6
r6c3(B) and r7c3(A) in column 3
r7c3(A) and r7c8(B) in row 7
r6c7(A) and r8c7(B) in column 7
r7c3(A) and r8c1(B) in box 7
Either all the As are 7s or all the Bs are 7s.
You'll notice that the Bs share a group in row 8, also in column 8 and box 9. Since any group cannot have more than one 7, Bs cannot be 7s. So eliminate 7s from all the Bs, and set all the As to 7. The puzzle is solved.