In spite of the lack of marking of the bilocals in the possibibity matrix, the bivalues fortunately lead to a simple solution. To wit, the 2 solutions of R1 exclude 5r5c4; stte
- Code: Select all
+--------------------+----------------------+-----------------+
| 3 7 (89) | 4 5 1 | 2 6(9) 68 |
| 4 28 2589 | 7 389 6 | 589 1 38 |
| 5689 68 1 | 9(23) 389 28 | 4 35 7 |
+--------------------+----------------------+-----------------+
| 58 238 2358 | 1 7 (258) | 6 4 9 |
| 7 46 456 | -5(36) 34(6) 9 | 18 2 18 |
| 1 9 246(8) | (26) 4(68) 24(8) | 3 7 5 |
+--------------------+----------------------+-----------------+
| 689 1468 4689 | 569 2 457 | 1579 35 136 |
| 2 5 7 | 8 19(6) 3 | 19 (69) 4 |
| 69 1346 3469 | 569 1469 457 | 1579 8 2 |
+--------------------+----------------------+-----------------+
8r1c3 -> 8r6c56; 5r4c6 or 2r4c6, 2r3c4, 3r5c4 => -5r5c4
or
9r1c3 -> 9r8c8, 6r8c5, hidden triple (236)r356c4 => -5r5c4
Other ways to proof -5r5c4 :
1.
Forbidding matrix :
- Code: Select all
5r5c4
|3r5c4 3r3c4 |
| 2r3c4 2r6c4|
|6r5c4 6r6c4|6r56c5
6r8c5 6r8c8
9r8c8 9r1c8
9r1c3 8r1c3
8r6c3 8r6c56
5r4c6 2r4c6 8r4c6 : IOW 5r5c4 -> r4c6 is empty
2. This wysiwyg forbidding matrix can be written in Eureka notation as a Kraken Cell (258)r4c6 :
HT(236)r356c4=6r56c5-6r8c5=(6-9)r8c8=9r1c8-(9=8)r1c3-8r6c3=8r6c56-8r4c6=*Wing[(5=*2)r4c6-2r6c4=(2-3)r3c4=3r5c4] -> derived SIS/constraint {3r5c4, 6r5c4, 5r4c6} :=> -{5r5c4}; stte
3. ...