Please Help!

Post the puzzle or solving technique that's causing you trouble and someone will help

Please Help!<g>

Postby WayneO » Thu Apr 19, 2007 12:10 am

Hello,
This is my first “Post”, so I do something wrong, or forget something,..please tell me.

I am stuck on this puzzle and hoping someone can help me.

This puzzle is from the Platinum Magazine Group Inc. “SUDOKU #04

Difficulty Level =”HARD”, Puzzle #2

*-----------*
|3..|..4|...|
|98.|36.|4.7|
|.5.|...|..1|
|---+---+---|
|.7.|24.|...|
|1..|793|..2|
|...|.58|.9.|
|---+---+---|
|8..|...|.7.|
|2.3|.71|.45|
|...|4..|..6|
*-----------*




*--------------------------------------------------------------------*
| 3 2 7 | 589 1 4 | 56 568 89 |
| 9 8 1 | 3 6 25 | 4 25 7 |
| 4 5 6 | 89 28 7 | 2389 238 1 |
|----------------------+----------------------+----------------------|
| 5 7 9 | 2 4 6 | 138 138 38 |
| 1 4 8 | 7 9 3 | 56 56 2 |
| 6 3 2 | 1 5 8 | 7 9 4 |
|----------------------+----------------------+----------------------|
| 8 169 4 | 56 23 259 | 1239 7 39 |
| 2 69 3 | 68 7 1 | 89 4 5 |
| 7 19 5 | 4 238 29 | 12389 1238 6 |
*--------------------------------------------------------------------*
Thank You,
WayneO
WayneO
 
Posts: 2
Joined: 28 February 2007

Postby Steve R » Thu Apr 19, 2007 12:28 am

Well, I see nothing wrong.

You could try two eliminations:
- 9 from r7c6 and r9c7 using the XY-wing for (23) pivoted on r7c5 with pincers r9c6 and r7c9
- 8 from r4c7 using the XY-wing for (39) pivoted on r7c9 with pincers r4c9 and r8c7.

Steve
Steve R
 
Posts: 74
Joined: 03 April 2006

Postby daj95376 » Thu Apr 19, 2007 12:29 am

If you're familiar with Unique Rectangles, then look for the UR Type 1 in <56> to quickly solve your puzzle.

If you're not familiar with Unique Rectangles, then you need to search for an XY-Wing, a Locked Candidate (1), and another XY-Wing.

Good Luck!
daj95376
2014 Supporter
 
Posts: 2624
Joined: 15 May 2006

Postby udosuk » Thu Apr 19, 2007 1:00 am

For one thing, you could have used the code tags to properly display your grids:
Code: Select all
 *-----------*
 |3..|..4|...|
 |98.|36.|4.7|
 |.5.|...|..1|
 |---+---+---|
 |.7.|24.|...|
 |1..|793|..2|
 |...|.58|.9.|
 |---+---+---|
 |8..|...|.7.|
 |2.3|.71|.45|
 |...|4..|..6|
 *-----------*

 *--------------------------------------------------------------------*
 | 3      2      7      | 589    1      4      | 56     568    89     |
 | 9      8      1      | 3      6      25     | 4      25     7      |
 | 4      5      6      | 89     28     7      | 2389   238    1      |
 |----------------------+----------------------+----------------------|
 | 5      7      9      | 2      4      6      | 138    138    38     |
 | 1      4      8      | 7      9      3      | 56     56     2      |
 | 6      3      2      | 1      5      8      | 7      9      4      |
 |----------------------+----------------------+----------------------|
 | 8      169    4      | 56     23     259    | 1239   7      39     |
 | 2      69     3      | 68     7       1     | 89     4      5      |
 | 7      19     5      | 4      238    29     | 12389  1238   6      |
 *--------------------------------------------------------------------*

Method: Enclose your grids with [code] and [/code].

To solve the puzzle from your state you can use a technique called XY-Wing (as Steve R pointed out):
Code: Select all
 *--------------------------------------------------------------------*
 | 3      2      7      | 589    1      4      | 56     568    89     |
 | 9      8      1      | 3      6      25     | 4      25     7      |
 | 4      5      6      | 89     28     7      | 2389   238    1      |
 |----------------------+----------------------+----------------------|
 | 5      7      9      | 2      4      6      |-138    138   A38     |
 | 1      4      8      | 7      9      3      | 56     56     2      |
 | 6      3      2      | 1      5      8      | 7      9      4      |
 |----------------------+----------------------+----------------------|
 | 8      169    4      | 56    B23    -259    | 1239   7    AB39     |
 | 2      69     3      | 68     7       1     |A89     4      5      |
 | 7      19     5      | 4      238   B29     | 12389  1238   6      |
 *--------------------------------------------------------------------*

Consider the cells marked A.
r7c9 must be one of two possible digits.
As a result, at least one of r4c9 and r8c7 must contain a certain digit.
Therefore, that digit can be eliminated from r4c7.

Consider the cells marked B.
r7c5 must be one of two possible digits.
As a result, at least one of r7c9 and r9c6 must contain a certain digit.
Therefore, that digit can be eliminated from r7c6.

After these two moves the rest would be very easy.:idea:
udosuk
 
Posts: 2698
Joined: 17 July 2005

Please Help

Postby WayneO » Tue May 01, 2007 6:48 pm

Dear udosuk,

I’m sorry to write you back, but I’m “new” to the XY-Wing, and I just can’t understand it.

Can you PLEASE tell me why, on the first set of numbers (A), why do you “single out”r4c7, and NOT r4c8 ??????

Thank you,
WayneO
WayneO
 
Posts: 2
Joined: 28 February 2007

Re: Please Help

Postby udosuk » Tue May 01, 2007 9:11 pm

WayneO wrote:Can you PLEASE tell me why, on the first set of numbers (A), why do you “single out”r4c7, and NOT r4c8 ??????

Code: Select all
 *--------------------------------------------------------------------*
 | 3      2      7      | 589    1      4      | 56     568    89     |
 | 9      8      1      | 3      6      25     | 4      25     7      |
 | 4      5      6      | 89     28     7      | 2389   238    1      |
 |----------------------+----------------------+----------------------|
 | 5      7      9      | 2      4      6      |-138    138   A38     |
 | 1      4      8      | 7      9      3      | 56     56     2      |
 | 6      3      2      | 1      5      8      | 7      9      4      |
 |----------------------+----------------------+----------------------|
 | 8      169    4      | 56     23     259    | 1239   7     A39     |
 | 2      69     3      | 68     7       1     |A89     4      5      |
 | 7      19     5      | 4      238   B29     | 12389  1238   6      |
 *--------------------------------------------------------------------*

Consider the cells marked A.
r7c9 must be one of two possible digits, 3 or 9.
As a result, at least one of r4c9 and r8c7 must contain a certain digit, 8.
Therefore, that digit, 8, can be eliminated from r4c7.

r4c8 is irrelevant because it isn't affected by r8c7.

To explain it even more plainly:

r7c9 must be 3 or 9.
If r7c9=3, r4c9=8 => r4c7<>8.
If r7c9=9, r8c7=8 => r4c7<>8.
Therefore r4c7 cannot be 8.

And to see it in the opposite way (the "trial-and-error" approach):

Suppose r4c7=8.
Then r7c9=3 and r8c7=9.
Then r7c9 cannot be 3 or 9.
Then we have no valid number to put in r7c9 => Contradiction.
Therefore r4c7 cannot be 8.

See the logic now?
udosuk
 
Posts: 2698
Joined: 17 July 2005

Postby hrcjcr » Sun May 06, 2007 9:56 pm

daj95376 wrote:If you're familiar with Unique Rectangles, then look for the UR Type 1 in <56> to quickly solve your puzzle.

Good Luck!


Has there been any work done on unique other shapes; such as parallelograms or trapezoids?
hrcjcr
 
Posts: 19
Joined: 19 November 2005

Postby wapati » Mon May 07, 2007 12:05 am

hrcjcr wrote:
daj95376 wrote:If you're familiar with Unique Rectangles, then look for the UR Type 1 in <56> to quickly solve your puzzle.

Good Luck!


Has there been any work done on unique other shapes; such as parallelograms or trapezoids?


Think fins. (trapezoid)

In the UR sense they are rare, but do occur.


Parallelograms suggests unique loops.

I am far from expert, btw.
wapati
2010 Supporter
 
Posts: 527
Joined: 13 September 2006
Location: Brampton, Ontario, Canada


Return to Help with puzzles and solving techniques