rep'nA wrote:Oh, and if you want a bit of homework, try using the the cells in r8c1, r9c1, r8c9, r9c9 to deduce r9c8 = 9.
- Code: Select all
*--------------------------------------------------------------------*
| 567 9 2 | 35 8 4 | 1 67 357 |
| 57 3 1 | 6 2 9 | 4 8 57 |
| 4 56 8 | 135 1357 157 | 356 2 9 |
|----------------------+----------------------+----------------------|
| 36 67 5 | 4 9 8 | 2 17 137 |
| 9 8 37 | 125 15 125 | 37 4 6 |
| 1 2 4 | 7 6 3 | 9 5 8 |
|----------------------+----------------------+----------------------|
| 8 57 37 | 12359 135 125 | 56 169 4 |
|*25 1 9 | 8 4 6 | 57 3 *257 |
|*235 4 6 | 1359 1357 157 | 8 -19 *125 |
*--------------------------------------------------------------------*
This won't solve the puzzle like the other one did, but it is fun to look for nonetheless.
I presume we have to show that [r9c8]=1 causes the deadly pattern of {25} in [r8c1], [r9c1], [r8c9] and [r9c9]; then [r9c8]<>1 => [r9c8]=9.
a) If [r9c8]=1 => [r9c9]<>1; => [r9c9] = {25}
b) If [r9c8]=1 => [r4c8]=7 =>[r5c7]<>7 =>[r8c7] = 7 => [r8c9]<>7; => [r8c9] = {25}
c) If [r9c8]=1 => [r4c8]=7 =>[r4c2]=6 => [r4c1]=3 => [r9c1] <> 3; => [r9c1] = {25}
Therefore, we get the deadly pattern so [r9c8]<>1 => [r9c8]=9.
Pretty neat exercise rep'nA. Creating the deadly pattern to eliminate a candidate is a new technique for me. Thanks for the initial explanation.
LB