platinum blonde full path

Post puzzles for others to solve here.

platinum blonde full path

Postby champagne » Tue Jan 27, 2026 2:17 pm

.......12........3..23..4....18....5.6..7.8.......9.....85.....9...4.5..47...6...

Platinum Blonde is a relatively old puzzle
With a rating Sudoku Explainer 10.6/1.2/1.2, it looks relatively low in the family of hardest puzzles.

It has been the first sudoku identified by “abi” as a variant of the Exocet having one target made of 2 cells with a locked extra digit (4r7c89).
“blue” as far as I remember has seen later a variant with a target of 3 digits with 2 extra digits locked, but I did not store this variant.

After the “golden nugget” not yet solved by “yzfwsf” 'code, I wanted to see if this sudoku was solved.

It is and, surprise, the sudoku has also a MSLS giving , with the Exocet, a cleaned PM solved with about 20 more steps of various solving technics by “yzfwsf”’ code.

I’ll copy in the next post this path, till the point STTE;

I wanted also to see if the strategy to clear remaining options in the Exocet could be applied with relatively short “contradiction” sequences, this will be shown in the following posts.

The start PM after hidden single 5r9c3
Code: Select all
35678 34589 34679 |4679   5689   4578   |679    1      2     
15678 14589 4679  |124679 125689 124578 |679    56789  3     
15678 1589  2     |3      15689  1578   |4      56789  6789 
------------------------------------------------------------
237   2349  1     |8      236    234    |23679  234679 5     
235   6     349   |124    7      12345  |8      2349   149     
23578 23458 347   |1246   12356  9      |12367  23467  1467     
------------------------------------------------------------
1236  123   8     |5      1239   1237   |123679 234679 14679
9     123   36    |127    4      12378  |5      23678  1678     
4     7     5     |129    12389  6      |1239   2389   189     


And the solution grid

Code: Select all
1=839 465 712
2=146 782 953
3=752 391 486

4=391 824 675
5=564 173 829
6=287 659 341

7=628 537 194
8=913 248 567
9=475 916 238
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

yzfwsf full path for platinum blonde

Postby champagne » Tue Jan 27, 2026 2:39 pm

Here below the path copied from "yzfwsf" solver

Hidden Text: Show
Code: Select all
Hidden Single: 5 in r9 => r9c3=5
MSLS:15 Cells r5689c3489, 15 Links 49r5,467r6,67r8,9r9,3c3,12c4,23c8,1c9,8b9
17 Eliminations:r2c4,r7c9<>1,r47c8,r2c4<>2,r47c8,r1c3<>3,r5c6,r6c2<>4,r6c57<>6,r6c17,r8c6<>7,r9c57<>9
Almost Locked Set XY-Wing: A=r123456c1{1235678}, B=b4p478{2358}, C=r1256c3{34679}, X,Y=6, 3, Z=2 =>  r4c2<>2
Junior Exocet:Base Cells-r1c7,r2c7;Target Cells-r4c8,r4c9,r7c8,r7c9;Cross Cells-r347c123456   
Target Cells Check: r4c8<>46,r7c8<>6,r7c9<>6
Check X-Rule:r2c7<>6,r1c7<>6
True Base digits seen by base cells or both targets: r2c8<>7,r3c8<>7,r3c9<>7,r4c7<>7,r7c7<>7,r8c8<>7r2c8<>9,r3c8<>9,r3c9<>9,r4c7<>9,r7c7<>9,r9c8<>9
True Base digits in non-'S' cells: r1c1<>7,r1c6<>7,r2c1<>7,r2c6<>7r1c2<>9,r1c5<>9,r2c2<>9,r2c5<>9
Almost Locked Set XY-Wing: A=r5c14689{123459}, B=b4p1478{23578}, C=r4c8{79}, X,Y=9, 7, Z=3 =>  r5c3<>3
Grouped AIC Type 2: 9r3c2 = r4c2 - (9=7)r4c8 - r4c1 = (7-3)r6c3 = (3-6)r8c3 = (6-1)r7c1 = 1r23c1 => r3c2<>1
Almost Locked Set XY-Wing: A=r3c289{5689}, B=r3c12589{156789}, C=r4c12567{234679}, X,Y=9, 7, Z=58 =>  r3c6<>5 r3c6<>8
ALS Discontinuous Nice Loop: (1=2345786)r6c1235789 - r4c7 = r7c7 - r7c1 = (6-3)r8c3 = r6c3 - (3=2581)r6c1257 => r6c4<>1,r6c4<>2
Uniqueness Test 3: 79 in r12c47 => r5c4 <> 4
Complex Grouped AIC Type 2: 9r3c5 = r3c2 - r12c3 = r9c9(r129\c3479) - 8r9c9 = 8r3c9,r9c5{FW} => r3c5<>8
Region Forcing Chain: Each 3 in c6 true in turn will all lead to: r4c1<>2
3r4c6 - (3=267)r4c157
3r5c6 - (3=462)b5p237
(3-7)r7c6 = 7r3c6 - 7r3c1 = 7r4c1
3r8c6 - 3r8c3 = (3-7)r6c3 = 7r4c1
Hidden Triple: 258 in r5c1,r6c1,r6c2 => r5c1<>3,r6c1<>3,r6c2<>3
H-Wing: (1=2)r5c4 - (2=5)r5c1 - r5c6 = 5r6c5 => r6c5<>1
Locked Candidates 1 (Pointing): 1 in b5 => r5c9<>1
Naked Pair: in r5c3,r5c9 => r5c8<>49,
Hidden Triple: 479 in r4c8,r6c8,r7c8 => r6c8<>236
Naked Triple: in r4c8,r5c9,r6c8 => r6c9<>47,
Locked Candidates 1 (Pointing): 7 in b6 => r7c8<>7
Swordfish:9c258\r347  => r7c9<>9
S-Wing: 1r5c4 = r5c6 - (1=7)r3c6 - r7c6 = 7r8c4 => r8c4<>1
AIC Type 2: (2=7)r8c4 - r8c9 = (7-4)r7c9 = (4-9)r7c8 = 9r7c5 => r7c5<>2
AIC Type 2: (1=6)r6c9 - (6=4)r6c4 - r6c8 = (4-9)r7c8 = 9r9c9 => r9c9<>1
Grouped AIC Type 2: 6r4c5 = r4c7 - r7c7 = r7c1 - (6=3)r8c3 - r6c3 = 3r4c12 => r4c5<>3
Empty Rectangle : 3 in b5 connected by c3 => r8c6 <> 3
Region Forcing Chain: Each 4 in r1 true in turn will all lead to: r1c4<>7
(4-3)r1c2 = 3r1c1 - (3=7)r4c1 - 7r6c3 = 7r8c4(c347\r1268)
4r1c3 - 4r5c3 = 4r5c9 - (4=7)r7c9 - 7r8c9 = 7r8c4
4r1c4
4r1c6 - (4=263)r4c567 - 3r4c12 = (3-7)r6c3 = 7r8c4(c347\r1268)
Uniqueness Test 7: 79 in r12c37; 2*biCell + 1*conjugate pairs(7r1) => r2c3 <> 9
Cell Forcing Chain: Each candidate in  r7c6 true in turn will all lead to: r2c6<>1
1r7c6
2r7c6 - 2r89c4 = (2-1)r5c4 = 1r5c6
3r7c6 - 3r79c5 = 3r6c5 - (3=476)r6c348 - (6=2)r4c5 - 2r2c5 = 2r2c6
7r7c6 - (7=1)r3c6
Cell Forcing Chain: Each candidate in  r7c6 true in turn will all lead to: r8c6<>2,r2c6<>8
1r7c6 - (1=263)r7c127 - 3r7c56 = (3-8)r9c5 = 8r8c6
2r7c6 - (2=163)r7c127 - 3r7c56 = (3-8)r9c5 = 8r8c6
3r7c6 - 3r79c5 = 3r6c5 - (3=476)r6c348 - (6=2)r4c5 - 2r2c5 = 2r2c6
7r7c6 - (7=129)r589c4 - (9=8)r9c9 - 8r9c5 = 8r8c6
Region Forcing Chain: Each 2 in r6 true in turn will all lead to: r3c2<>8
(2-8)r6c1 = 8r6c2
2r6c2 - (2=13)r78c2 - 3r8c3 = 3r6c3 - (3=794)r4c128 - 9r4c2 = 9r3c2
2r6c5 - (2=463)b5p237 - 4r4c6 = (4-9)r4c2 = 9r3c2
2r6c7 - (2=583)r6c125 - 3r45c6 = 3r7c6 - (3=1269)r7c1257 - 9r3c5 = 9r3c2
Region Forcing Chain: Each 3 in c1 true in turn will all lead to: r1c1<>5
3r1c1
3r4c1 - (3=2469)r4c2567 - (9=5)r3c2
3r7c1 - 3r8c23 = 3r8c8 - (3=2)r5c8 - (2=5)r5c1
Cell Forcing Chain: Each candidate in  r7c6 true in turn will all lead to: r4c6<>2
1r7c6 - 1r9c45 = 1r9c7 - (1=235784)r6c123578 - 4r6c4 = 4r4c6
2r7c6
3r7c6 - 3r5c6 = 3r5c8 - (3=62)r4c57
7r7c6 - 7r3c6 = 7r3c1 - (7=362)r4c157
Hidden Pair: 26 in r4c5,r4c7 => r4c7<>3
Empty Rectangle : 3 in b6 connected by c3 => r8c8 <> 3
Locked Candidates 2 (Claiming): 3 in r8 => r7c1<>3,r7c2<>3
L2-Wing: 6r7c1 = (6-3)r8c3 = r8c2 - r1c2 = 3r1c1 => r1c1<>6
Broken Wing: {r1c35,r4c57,r7c17,r3c1}, guardian-{r2c135,r1c4,r3c5} => r2c4<>6
Grouped AIC Type 1: 2r2c6 = r2c5 - r4c5 = (2-6)r4c7 = r7c7 - r7c1 = (6-3)r8c3 = (3-2)r8c2 = 2r7c12 => r7c6<>2
Almost Locked Set XZ-Rule: A=r37c6 {137},B=b5p2347 {12346}, X=3, Z=1 => r5c6<>1
Hidden Single: 1 in r5 => r5c4=1
Locked Candidates 2 (Claiming): 2 in c4 => r9c5<>2
Grouped Discontinuous Nice Loop: 2r2c6 = (2-8)r2c5 = r1c56 - (8=3)r1c1 - (3=7)r4c1 - r3c1 = (7-1)r3c6 = r78c6 - r9c5 = r9c7 - r6c7 = (1-6)r6c9 = r6c4 - (6=2)r4c5 - r5c6 = 2r2c6 => r2c6=2
Empty Rectangle : 4 in b4 connected by c6 => r1c3 <> 4
S-Wing: 2r5c1 = r5c8 - (2=6)r4c7 - r7c7 = 6r7c1 => r7c1<>2
Locked Candidates 2 (Claiming): 2 in c1 => r6c2<>2
Grouped Discontinuous Nice Loop: 2r4c5 = (2-6)r4c7 = (6-1)r6c9 = r6c7 - r9c7 = r9c5 - r23c5 = (1-7)r3c6 = r3c1 - r4c1 = r4c8 - (7=4)r6c8 - (4=6)r6c4 - (6=2)r4c5 => r4c5=2
Hidden Single: 6 in r4 => r4c7=6
Hidden Single: 6 in r6 => r6c4=6
Hidden Single: 6 in r7 => r7c1=6
Hidden Single: 4 in b5 => r4c6=4
Naked Single: r6c9=1
Naked Single: r8c3=3
Locked Candidates 2 (Claiming): 1 in c1 => r2c2<>1
Locked Candidates 2 (Claiming): 4 in c2 => r2c3<>4
Skyscraper : 3 in r7c6,r9c8 connected by r5c68 => r7c7,r9c5 <> 3
Naked Pair: in r8c6,r9c5 => r7c5<>1,r7c6<>1,
W-Wing: 58 in r1c6,r6c2 connected by 5r5 => r1c2<>8
XY-Chain: (5=8)r1c6 - (8=1)r8c6 - (1=2)r8c2 - (2=1)r7c2 - (1=2)r7c7 - (2=3)r6c7 - (3=5)r6c5 - (5=3)r5c6 - (3=7)r7c6 - (7=4)r7c9 - (4=9)r7c8 - (9=7)r4c8 - (7=3)r4c1 - (3=9)r4c2 - (9=5)r3c2 => r1c2,r3c5<>5
Locked Candidates 2 (Claiming): 5 in r1 => r2c5<>5
XY-Chain: (7=9)r1c7 - (9=4)r1c4 - (4=3)r1c2 - (3=9)r4c2 - (9=4)r5c3 - (4=7)r6c3 => r1c3<>7
Hidden Single: 7 in r1 => r1c7=7
Hidden Single: 9 in c7 => r2c7=9
XY-Chain: (5=8)r1c6 - (8=1)r8c6 - (1=2)r8c2 - (2=1)r7c2 - (1=2)r7c7 - (2=3)r6c7 - (3=5)r6c5 => r1c5,r5c6<>5
STTE


the 2 main points, reordered are
the known exocet
Code: Select all
Junior Exocet:Base Cells-r1c7,r2c7;Target Cells-r4c8,r4c9,r7c8,r7c9;Cross Cells-r347c123456   
Target Cells Check: r4c8<>46,r7c8<>6,r7c9<>6
Check X-Rule:r2c7<>6,r1c7<>6

and this MSLS that I had never seen before

MSLS:15 Cells r5689c3489, 15 Links 49r5,467r6,67r8,9r9,3c3,12c4,23c8,1c9,8b9



combining both, we get this cleaned PM

Code: Select all
3568  3458  4679  |4679   568    458    |79     1      2     
1568  1458  4679  |4679   12568  12458  |79     568    3     
15678 1589  2     |3      15689  1578   |4      568    68 
------------------------------------------------------------
237   2349  1     |8      236    234    |236    79     5     
235   6     349   |124    7      1235   |8      2349   149   
2358  2358  347   |1246   1235   9      |123    23467  1467     
------------------------------------------------------------
1236  123   8     |5      1239   1237   |1236   479    479 
9     123   36    |127    4      1238   |5      2368   1678     
4     7     5     |129    1238   6      |123    238    189


This will be the start to try to finish the path mainly thru the remaining exocet possible patterns.
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

path in exocet area

Postby champagne » Tue Jan 27, 2026 3:09 pm

One way to filter possible options for the Exocet is to consider the 2 UR threats
R12c37
R12c47

Here is a Pm cut to the cells to consider

Code: Select all
_     _     4679  |4679   _      _      |79b    _      _     
_     _     4679  |4679   _      _      |79b    _      _     
_     _     _     |_      15689  1578   |4      _      _   
------------------------------------------------------------
237   2349  _     |_      236    234    |236    79     _     t
_     6     349   |124    7      _      |_      _      _       
_     _     347   |1246   _      9      |_      _      _     
------------------------------------------------------------
1236  _     _     |_      1239   1237   |1236   479    479   tt
9     _     36    |127    4      1238   |_      _      _       
4     7     _     |129    _      6      |_      _      _         


Can not be 46r12c3 nor 46r12c4 (trivial, locked in targets)
Must be one and only one ‘4’ in r4


So we have four possible pairs in r12c3
47 49 67 69, with the other digits in r12c4

49 r12c3 is not possible in box 4
so we are left with 3 pairs in r12c3

69 the valid pair for r12c3
47 and 67 the 2 false pairs
We start showing 47 false forcing 4r4c6, first cell assigned
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

4r4c2+9r4c8 not valid

Postby champagne » Wed Jan 28, 2026 8:09 pm

Showing 4r4c2+9r4c8 not valid
This is 47r12c3 and 69 r12c4
9r4c8 #9r7c89
->7r4c1;3r5c3;#3r5c5;6r4c5;9r7c5 ->6r8c3; 3r9c5;8r8c6

The PM at this point with key clearings
Code: Select all
3568  3458  47    |69     568    458    |79b    1      2     
1568  1458  47    |69     12568  12458  |79b    568    3     
15678 1589  2     |3      15689  1578   |4      568    68 
------------------------------------------------------------
7     4     1     |8      6      234    |236    9      5     
235   6     39    |124    7      1235   |8      2349   149       
2358  2358  3     |124    125    9      |123    23467  1467     
------------------------------------------------------------
1236  123   8     |5      9      1237   |1236   47     47     
9     123   6     |7      4      8      |5      2368   1678     
4     7     5     |12     3      6      |123    238    189       

Now turbot 2r9c7-> 2r7c6->2r4c7 #2r9c7
Contradiction 1r8c9 1r9c7


Note : this is a relatively short contradiction, but would be, I think, be classified as “nested” in sudoku explainer.
IMO being in a strategy to clean all options of the Exocet pattern, it’s not so difficult…

Now we have 4r4c6 assigned and a new PM to finish the path
Code: Select all
3568  3458  679   |479    568    58     |79     1      2     
1568  458   679   |479    12568  1258   |79     568    3     
15678 589   2     |3      15689  1578   |4      568    68 
------------------------------------------------------------
237   39    1     |8      23     4      |6      79     5     
235   6     49    |12     7      1235   |8      2349   149       
2358  358   47    |6      1235   9      |123    2347   147       
------------------------------------------------------------
6     12    8     |5      1239   1237   |123    479    479   
9     12    3     |127    4      128    |5      268    1678     
4     7     5     |129    1238   6      |123    238    189       


next post will clear the last false possibility for the exocet pattern, still I think, a "nested" contradiction, but very short also.
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

Re: platinum blonde full path

Postby champagne » Thu Jan 29, 2026 3:06 pm

The last case to show false is 9r4c8; 7r7c89

The PM after easy moves in targets row4 columns 3,4

Code: Select all
3568  3458  67    |49     568    58     |79     1      2     
1568  458   67    |49     12568  1258   |79     568    3     
15678 589   2     |3      15689  1578   |4      568    68 
------------------------------------------------------------
7     3     1     |8      2      4      |6      9      5     
235   6     9     |1      7      1235   |8      2349   14       
2358  358   4     |6      1235   9      |123    2347   147       
------------------------------------------------------------
6     12    8     |5      1239   1237   |123    47     47     
9     12    3     |7      4      128    |5      268    1678     
4     7     5     |2      1238   6      |123    238    189     


147r567c9 -> #1r6c7
After cleaning, the ‘3’ pm is
Code: Select all
3.. ... ...
 ... ... ..3
 ... 3.. ...

 .3. ... ...
 ... ..3 .3.
 ... .3. x3.

 ... ..3 3..
 ..3 ... ...
 ... .3. 3x.


The 2 ‘x’ are not valid (turbots)
3r9c8->3r7c6->3r4c8
3c6c7->3r7c4->3r5c8

Then
2r9c4->8r9c8->8r8c6
2r6c7->2r5c1->8r5c6
Cell r1c6 is empty

We have now r4c8=9 and 47 in r7c89;
the end will come in the next post
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

Re: platinum blonde full path

Postby champagne » Fri Jan 30, 2026 9:05 am

After the clearing of the last false case in the exocet pattern, I solved easily the PM. To be sure, I entered the key values and checked this puzzle rated skfr 1.5

.......12........37.23..4...918.4675.64.7.8....76.9...6.85.7...9.3.4.5.74759.6...

So, no doubt, after the four steps above

JE compendium
MSLS
# 4r4c2+9r4c8
# 4r4c6+9r4c8


The sudoku reaches the stte status

Difficult to compare the last 2 steps with “yzfwsf” ‘ path, but contradictions harder to establish on a limited and well known number of cases seems to me easier that the long sequence of various simpler patterns no so easy to point.

This is the end of this thread on my side.
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

Re: platinum blonde full path

Postby Cenoman » Fri Jan 30, 2026 11:22 pm

I've tried something different. Not sure I have any legitimacy to do so.

JE(679)r12c7, r4c8, r7c89 with base pairs 67 & 69 incompatibles (=> -6 r12c7, -79r89c9, -79 in non S-cells of their cover lines)
The MSLS mentionned by champagne is not used below.

After JE eliminations
Code: Select all
 +--------------------------+---------------------------+------------------------+
 |  3568    3458    34679   |  4679     568     458     |  79     1       2      |
 |  1568    1458    4679    |  124679   12568   12458   |  79     568     3      |
 |  15678   1589    2       |  3        15689   1578    |  4      568     68     |
 +--------------------------+---------------------------+------------------------+
 |  237     2349    1       |  8        236     234     |  236    79      5      |
 |  235     6       349     |  124      7       12345   |  8      2349    149    |
 |  2358    23458   347     |  1246     12356   9       |  1236   23467   1467   |
 +--------------------------+---------------------------+------------------------+
 |  1236    123     8       |  5        1239    1237    |  1236   479     479    |
 |  9       123     36      |  127      4       1238    |  5      2368    1678   |
 |  4       7       5       |  129      1238    6       |  123    238     189    |
 +--------------------------+---------------------------+------------------------+

As the true base pair is known, the JE target cells have only two possible configurations:
r4c8 = 9 AND r7c89 = 47
OR
r4c8 =7 AND r7c89 = 49

In the first configuration (r4c8 = 9, r7c89 = 47), pm's ater basics:
Code: Select all
 +----------------------+-------------------------+------------------------+
 |  3568   3458   3467  |  469    568     458     |  79     1       2      |
 |  1568   1458   467   |  12469  12568   12458   |  79     568     3      |
 |  1568   9      2     |  3      1568    7       |  4      568     68     |
 +----------------------+-------------------------+------------------------+
 |  7     a34-2   1     |  8      236     234     |  236    9       5      |
 |  235    6      9     |  124    7       12345   |  8      234     14     |
 |  2358   23458 b34    |  1246   12356   9       |  1236   23467   1467   |
 +----------------------+-------------------------+------------------------+
 |  1236  c123    8     |  5      9       123     |  1236   47      47     |
 |  9     c123   b36    |  7      4       1238    |  5      2368    168    |
 |  4      7      5     |  12     1238    6       |  123    238     9      |
 +----------------------+-------------------------+------------------------+

1. (4)r4c2 = (43)r68c3 - (3=12)r78c2 => -2 r4c2

Code: Select all
 +----------------------+-------------------------+------------------------+
 |  3568   3458   3467  |  469    568     458     |  79     1       2      |
 |  1568   1458   467   |  12469  12568   12458   |  79     568     3      |
 |  1568   9      2     |  3      1568    7       |  4      568     68     |
 +----------------------+-------------------------+------------------------+
 |  7     a34     1     |  8     g26-3    234     | f236    9       5      |
 |  25     6      9     |  124    7       12345   |  8      234     14     |
 |  258    258   b34    |  1246   12356   9       |  1236   23467   1467   |
 +----------------------+-------------------------+------------------------+
 | d1236   123    8     |  5      9       123     | e1236   47      47     |
 |  9      123   c36    |  7      4       1238    |  5      2368    168    |
 |  4      7      5     |  12     1238    6       |  123    238     9      |
 +----------------------+-------------------------+------------------------+

2. (3)r4c2 = r6c3 - (3=6)r8c3 - r7c1 = r7c7 - r4c7 = (6)r4c5 => -3 r4c5

Code: Select all
 +----------------------+-------------------------+------------------------+
 |  3568   3458   3467  |  469    568     458     |  79     1       2      |
 |  1568   1458   467   |  12469  12568   12458   |  79     568     3      |
 |  1568   9      2     |  3      1568    7       |  4      568     68     |
 +----------------------+-------------------------+------------------------+
 |  7    zC34q    1     |  8      26      24-3    | a236r   9       5      |
 |  25     6      9     |  124    7       12345   |  8      234s    14s    |
 |  258    258  yB34p   |  1246  Z12356   9       | A1236s  2367-4  167-4  |
 +----------------------+-------------------------+------------------------+
 | w1236   123    8     |  5      9       123     | v1236   47      47     |
 |  9      123   x36    |  7      4       1238    |  5      2368    168    |
 |  4      7      5     |  12    Y1238    6       | X123    238     9      |
 +----------------------+-------------------------+------------------------+

3. Kraken column (3)r4679c7
(3)r4c7
(3)r6c7 - r6c3 = (3)r4c2
(3-6)r7c7 = r7c1 - (6=3)r8c3 - r6c3 = (3)r4c2
(3)r9c7 - r9c5 = (3)r6c5
=> -3 r4c6

Code: Select all
 +-----------------------+------------------------+-----------------------+
 |  3568   3458   3467   |  469   568     458     |  79     1      2      |
 |  1568   1458   467    |  469   12568   12458   |  79     568    3      |
 |  1568   9      2      |  3     1568    7       |  4      568    68     |
 +-----------------------+------------------------+-----------------------+
 |  7      34     1      |  8     26      24      |  36     9      5      |
 |  25     6      9      |  14    7      d35      |  8     f3-2    14     |
 |  258    258    34     |  146   35      9       |  1236   47     1467   |
 +-----------------------+------------------------+-----------------------+
 | c1236  c123    8      |  5     9      d13      |  1236   47     47     |
 |  9     b123    36     |  7     4       138     |  5     a2368   168    |
 |  4      7      5      |  2     138     6       |  13     38     9      |
 +-----------------------+------------------------+-----------------------+

5. (2)r8c8 = (2-1)r8c2 = r7c12 - (1=3)r7c6 - r5c6 = (3)r5c8 => -2 r5c8

This last elimination leads to a contradiction:
-2r5c7 => +53r5c68
Then
(53)r5c68 - 5r1c6
(53)r5c68 - (3=8)r9c8 - r9c5 = (8)r8c6 - 8r1c6
(53)r5c68 - (3=624)r4c567 - 4r1c6
=> r1c6 void => the first target cells configuration is False.

Therefore the true configuration of the JE target cells is the second one (r4c8 = 7, r7c89 =49)
Code: Select all
 +--------------------------+---------------------------+-----------------------+
 |  3568    3458    34679   |  4679     568     458     |  79     1      2      |
 |  1568    1458    4679    |  124679   12568   12458   |  79     568    3      |
 |  15678   1589    2       |  3        15689   1578    |  4      568    68     |
 +--------------------------+---------------------------+-----------------------+
 |  23      2349    1       |  8        236     234     |  236    7      5      |
 |  235     6       349     |  124      7       12345   |  8      2349   149    |
 |  2358    23458   347     |  1246     12356   9       |  1236   2346   146    |
 +--------------------------+---------------------------+-----------------------+
 |  1236    123     8       |  5        1239    1237    |  1236   49     49     |
 |  9       123     36      |  127      4       1238    |  5      2368   1678   |
 |  4       7       5       |  129      1238    6       |  123    238    189    |
 +--------------------------+---------------------------+-----------------------+

lclste
Cenoman
Cenoman
 
Posts: 3209
Joined: 21 November 2016
Location: France

Re: platinum blonde full path

Postby champagne » Sat Jan 31, 2026 8:16 am

Hi cenoman,

I've tried something different. Not sure I have any legitimacy to do so.


Finding the shortest possible logic path has no limit, but most programs including “yzfwsf” ‘ one want to have a clearing for each step.

The hidden (complex) logic of the JE compendium has several hidden steps without elimination, but it is processed here as a “pattern”;

What is done in your path could be seen as a nested net of chains, with 2 candidates as start. Out of the scope of Sudoku Explainer and from “yzfwsf” design.

The closer rating in SE is “nested level 1 dynamic forcing chains” classified as “hard moves”.

As I wrote in other posts, Doing so with a good reason to have the 2 candidates start pushes it down to something as dynamic forcing chains, but in a simplified PM


The MSLS mentionned by champagne is not used below.


The MSLS was the first step in “yzfwsf” path. This is in line IMO with the view of David writing that it is easy to spot just using the given.
Here the MSLS leads to the PM where the double UR threat helps us.
The double UR threat is nearly always there in a JE for each pair of digits or the base.
In the best case, we have the “abi” loop and the clearing done here in the JE compendium for 2 of the 3 pairs. This is using the ‘or’ of the 2 digits of the base.
Here, the MSLS offers more logic using the other 2 digits (46) in the 2 UR threats.

Without the MSLS I would have tried something similar to your path, but without the skills

Last point, I wanted to finish in stte position, so, after your last PM, I still would have done my last step.
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany

Re: platinum blonde full path

Postby marek stefanik » Sat Jan 31, 2026 11:48 pm

I've come up with a solution which shows a similarity to exocet+sk-loop puzzles.
It follows the same structure as champagne's solution, but doesn't use uniqueness to determine the base pair.
First, I will use a more sk-loop-shaped rank0 pattern (with the same elims as the MSLS):

Code: Select all
                4679    4679                    \679
,---------------------,------------------------,-----------------------,
| 35678  34589 *4679–3|*4679    5689    4578   |#679     1       2     |
| 15678  14589 *4679  |*4679–12 125689  124578 |#679     56789   3     |
| 15678  1589   2     | 3       15689   1578   | 4       56789   6789  |
:---------------------+------------------------+-----------------------:
| 237    2349   1     | 8       236     234    | 23679  *4679–23 5     |  4679
| 235    6      349   | 124     7       1235–4 | 8       2349    149   |  \479b4
| 2358–7 2358–4 347   | 1246    1235–6  9      | 123–67  23467   1467  |  \46b5
:---------------------+------------------------+-----------------------:
| 1236   123    8     | 5       1239    1237   | 123679 *4679–23*4679–1|  4679
| 9      123    36    | 127     4       1238–7 | 5       23678   1678  |  \6b7
| 4      7      5     | 129     1238–9  6      | 123–9   2389    189   |  \79b8
'---------------------'------------------------'-----------------------'
I like to think about it in terms of of fitting 4679 into r47:
There can be two of 4679 in r47c12, since they are forced into r12c3,
there can be two of 4679 in r47c56, since they are forced into r12c4,
there can be one of 4679 in r47c7 and three in r47c89.
Combined, that is eight ways to place them, so we need all of them.
That is, two in the left stack, two in the middle stack, and four in the right stack.


An important feature of the exocet+sk-loop combo is a so-called PLQ (pattern-locked quad).
Here, we can get something similar:
Code: Select all
,--------------------,----------------------,---------------------,
| 35678  34589  4679 | 4679  5689    4578   |B679     1      2    |
| 15678  14589  4679 | 4679  125689  124578 |B679     56789  3    |
| 15678  1589   2    | 3     15689   1578   | 4       56789  6789 |
:--------------------+----------------------+---------------------:
| 237    2349   1    | 8     236     234    | 23679  T679–4  5    |
| 235    6      349  | 124   7       1235   | 8       2349   149  |
| 2358   2358   347  | 1246  1235    9      | 123     23467  1467 |
:--------------------+----------------------+---------------------:
| 1236   123    8    | 5     1239    1237   | 123679 T4679  T4679 |
| 9      123    36   | 127   4       1238   | 5       23678  1678 |
| 4      7      5    | 129   1238    6      | 123     2389   189  |
'--------------------'----------------------'---------------------'
The base digits appear once each in r4c8+r7c89, together with 4r7.
The non-base 679 is then the digit which takes c7.
Each of 4679 appears once in r47c789 (but we don't know exactly which cell in c7 is part of the quad).
That means that each of 4679 appears exactly once in r47c1256.


Another key feature of a variety of sk-loops is the STP (single-truth property).
Again, it is in some form present here, too:
Code: Select all
,--------------------,----------------------,---------------------,
| 35678  34589  4679 | 4679  5689    4578   | 679     1      2    |
| 15678  14589  4679 | 4679  125689  124578 | 679     56789  3    |
| 15678  1589   2    | 3     15689   1578   | 4       56789  6789 |
:--------------------+----------------------+---------------------:
|a237   a2349   1    | 8    b236     234    | 23679  c679    5    |
| 235    6      349  | 124   7       1235   | 8       2349   149  |
| 2358   2358   347  | 1246  1235    9      | 123     23467  1467 |
:--------------------+----------------------+---------------------:
|B1236   123    8    | 5    A1239   A1237   | 123679 C4679  C4679 |
| 9      123    36   | 127   4       1238   | 5       23678  1678 |
| 4      7      5    | 129   1238    6      | 123     2389   189  |
'--------------------'----------------------'---------------------'
Suppose 79r4c12. The left stack is full, so 6 must take the middle stack, so 6r4c5.
But then r4c8 has no value left, i.e. contra.
Suppose 79r7c56 instead. The middle stack is full, so 6 must take the left stack, so 6r7c1.
But then r7c89 have only 4 left, i.e. contra.
Therefore, 79 appear in different stacks. By complement, 46 also appear in different stacks.
This gives us three options for the left stack: 47, 67, and 69.


In the 47 case, we get 69 in the middle stack. Filling in 4679b4578 and r4c8 gets us here:
Code: Select all
,----------------,-------------------,--------------------,
| 3568  3589  47 | 469  58    4578   | 679    1      2    |
| 1568  1589  47 | 469  1258  124578 | 679    5678   3    |
| 1568  1589  2  | 3    158   1578   | 4      5678   6789 |
:----------------+-------------------+--------------------:
| 7     4     1  | 8    6    *23     |*23     9      5    |
| 235   6     9  | 2–14 7     1235   | 8      4–23   14   |
| 2358  2358  3  | 124  1235  9      | 23–1   23467  1467 |
:----------------+-------------------+--------------------:
| 123   123   8  | 5    9    *123    | 12367  467    467  |
| 9     123   6  | 7    4    *1238   | 5      238    18   |
| 4     7     5  |*–12 *1238  6      | 1–23   238    189  |
'----------------'-------------------'--------------------'
23r4b8\c56r9 => –23r9c7
r46c7=23, r5c89=14, r5c4=2, no value left in r9c4


Therefore, we are left with 67 and 69.
We can fill in 6r7c1, 6r6c4, 4r4c6, 3r8c3. 12r78c2 eliminate other 12c2.
This reduces the skfr to 9.0 (7.3 if we use uniqueness to obtain the base pair).


The 67 case takes a bit longer to break.
singles 4679b4578, r4c2, r4c5, r5c4, r9c4, r5c9, r7c9, r6c9, r7c8, 7b6
Code: Select all
,---------------,-----------------,----------------,
| 358  4589  67 | 49  568   578   | 679  1     2   |
| 158  4589  67 | 49  1568  2–1578| 679  5689  3   |
| 158  589   2  | 3   1568  7–158 | 4    5689  689 |
:---------------+-----------------+----------------:
| 7    3     1  | 8   2     4     | 69   69    5   |
| 25   6     9  | 1   7    *35    | 8   *23    4   |
| 258  58    4  | 6  *35    9     |*23   7     1   |
:---------------+-----------------+----------------:
| 6    12    8  | 5   9    *13    |*123  4     7   |
| 9    12    3  | 7   4     18    | 5    268   68  |
| 4    7     5  | 2  *38–1  6     | 1–3 *389   89  |
'---------------'-----------------'----------------'
singles 7r3, 2c6; 1c6\b8; single 1r9
3b5689 forms an impossible pattern


We are left with the 69 case.
9r4c2, 9r9c4, 7r7c6, 7r6c3, stte
marek stefanik
 
Posts: 393
Joined: 05 May 2021

Re: platinum blonde full path

Postby champagne » Tue Feb 10, 2026 4:52 pm

Hi"marek stefanik"

Late reaction to your path

=== alternative rank 0 logic.
Your 18/truths // 18 links equivalent to the MSLS is not a surprise.
For me, with the help of a computer, it’s not harder to find that the MSLS but David and other players find the MSLS easier to spot using only the given.

== uniqueness restriction

I tested the eliminations coming with a multi floors analysis for the digits 4679
I got 28 eliminations including the rank0 logic and the basic eliminations of the Exocet logic.
But the 6 is still there in base and targets. The clearing of the ‘6’ uses the “abi” loop based on a UR threat.

For most of the exocets with 3 digits that I have seen, this is a key point to finish with a “nearly solved” puzzle.
You wanted a path without uniqueness, it would be much easier using the basic UR threat.
champagne
2017 Supporter
 
Posts: 7866
Joined: 02 August 2007
Location: France Brittany


Return to Puzzles