- Code: Select all
mtwtf mtwtf mtwtf mtwtf
evert 000X0 00XX0 000XX 00!00
peter 0!XX0 XXX00 X0000 XX00X
eddy 000!0 00X00 XXXXX XX0XX
jeffrey 000XX X!XX0 0XXX0 00X00
mary 0X00X XX!XX 000XX 00X00
! = scheduled/0 = available/X = not available
The only person I could exchange with was peter because he
had time available on the day of my duty and vice versa.
So in the scheme I had to look for a square like
- Code: Select all
0..!
!..0
This is a very little bit similar to finding subsudoku's in sudoku grids
like 1-9 with c1r1-c5r8:
- Code: Select all
1;7;4;5;9;6;8;2;3;
5;6;2;8;3;4;7;9;1;
3;8;9;1;7;2;4;6;5;
4;9;3;6;5;1;2;7;8;
7;2;5;9;4;8;1;3;6;
8;1;6;7;2;3;5;4;9;
2;5;1;4;6;9;3;8;7;
9;4;8;3;1;7;6;5;2;
6;3;7;2;8;5;9;1;4;
Does this give a connection between sudoku maths and scheduling and planning problems?