- Code: Select all
048003006000500000020086007300000000056070120000000004200360010000009000900200430<
It contains a pivotal cell and three strong links: [r5c1]=4=([r4c3],[r5c6],[r8c1])
- Code: Select all
# Multi-Colors easily confirms that the pivotal cell must be <4>.
# pivotal cell Blue [r5c1] = 4 or else ...
# linked cells Green [r4c3],[r5c6],[r8c1] = 4
# linked cells = 4 => Pink/Amber [r7c36]<>4 => contradiction!
*--------------------------------------------------------------------*
| 157 4 8 | 17 129 3 | 259 59 6 |
| 6 379 379 | 5 249 247 | 2389 489 1 |
| 15 2 1359 | 14 8 6 | 359 459 7 |
|----------------------+----------------------+----------------------|
| 3 1789 -12479G | 1468 1245 12458 | 56789 56789 589 |
| 48B 5 6 | 9 7 -48G | 1 2 3 |
| 178 1789 1279 | 168 3 1258 | 56789 56789 4 |
|----------------------+----------------------+----------------------|
| 2 78 457P | 3 6 4578A | 5789 1 589 |
|-14578G 1378 13457 | 1478 145 9 | 5678 5678 2 |
| 9 6 157 | 2 15 1578 | 4 3 58 |
*--------------------------------------------------------------------*
As I recall, the few examples that I've encountered have the pivotal cell being true. Does anyone have an example where the pivotal cell is false?
===== ===== ===== ===== Addendum
Assuming Pivotal Cell (@) is false and Linked Cells (+) are true in the above puzzle:
Candidates are eliminated from (-) cells and must exist in a limited environment in the remaining units. Upon close examination, the puzzle above fails to have the candidate in any of the acceptable cells (.) in [b8] or [r7].
- Code: Select all
*-----------------------------*
| - . - | . . - | . . . |
| - . - | . . - | . . . |
| - . - | . . - | . . . |
|---------+---------+---------|
| - - + | - - - | - - - |
| @ - - | - - + | - - - |
| - - - | - - - | . . . |
|---------+---------+---------|
| - - - | . . - | . . . |
| + - - | - - - | - - - |
| - - - | . . - | . . . |
*-----------------------------*