- Code: Select all
- 048003006000500000020086007300000000056070120000000004200360010000009000900200430<
It contains a pivotal cell and three strong links: [r5c1]=4=([r4c3],[r5c6],[r8c1])
- Code: Select all
- # Multi-Colors easily confirms that the pivotal cell must be <4>.
 # pivotal cell Blue [r5c1] = 4 or else ...
 # linked cells Green [r4c3],[r5c6],[r8c1] = 4
 # linked cells = 4 => Pink/Amber [r7c36]<>4 => contradiction!
 *--------------------------------------------------------------------*
 | 157 4 8 | 17 129 3 | 259 59 6 |
 | 6 379 379 | 5 249 247 | 2389 489 1 |
 | 15 2 1359 | 14 8 6 | 359 459 7 |
 |----------------------+----------------------+----------------------|
 | 3 1789 -12479G | 1468 1245 12458 | 56789 56789 589 |
 | 48B 5 6 | 9 7 -48G | 1 2 3 |
 | 178 1789 1279 | 168 3 1258 | 56789 56789 4 |
 |----------------------+----------------------+----------------------|
 | 2 78 457P | 3 6 4578A | 5789 1 589 |
 |-14578G 1378 13457 | 1478 145 9 | 5678 5678 2 |
 | 9 6 157 | 2 15 1578 | 4 3 58 |
 *--------------------------------------------------------------------*
As I recall, the few examples that I've encountered have the pivotal cell being true. Does anyone have an example where the pivotal cell is false?
===== ===== ===== ===== Addendum
Assuming Pivotal Cell (@) is false and Linked Cells (+) are true in the above puzzle:
Candidates are eliminated from (-) cells and must exist in a limited environment in the remaining units. Upon close examination, the puzzle above fails to have the candidate in any of the acceptable cells (.) in [b8] or [r7].
- Code: Select all
- *-----------------------------*
 | - . - | . . - | . . . |
 | - . - | . . - | . . . |
 | - . - | . . - | . . . |
 |---------+---------+---------|
 | - - + | - - - | - - - |
 | @ - - | - - + | - - - |
 | - - - | - - - | . . . |
 |---------+---------+---------|
 | - - - | . . - | . . . |
 | + - - | - - - | - - - |
 | - - - | . . - | . . . |
 *-----------------------------*


