.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------+-------------------+-------------------+
! 7 59 23 ! 36 259 23569 ! 8 4 1 !
! 19 6 28 ! 148 12589 2459 ! 7 3 25 !
! 13 58 4 ! 1378 12578 235 ! 9 256 256 !
+-------------------+-------------------+-------------------+
! 2 4 5 ! 9 3 1 ! 6 7 8 !
! 8 3 9 ! 2 6 7 ! 5 1 4 !
! 6 1 7 ! 5 4 8 ! 3 29 29 !
+-------------------+-------------------+-------------------+
! 39 7 1 ! 368 2589 23569 ! 4 569 3569 !
! 4 2 36 ! 367 579 3569 ! 1 8 3569 !
! 5 89 368 ! 1346 19 3469 ! 2 69 7 !
+-------------------+-------------------+-------------------+
The puzzle is in W4.
However, the simplest 1-step solution is in W6:
- Code: Select all
whip-rc[6]: r1c2{n5 n9} - r2c1{n9 n1} - r3c1{n1 n3} - r3c6{n3 n2} - r3c9{n2 n6} - r3c8{n6 .} ==> r3c2 ≠ 5
stte
Notice that this is the chain version of RSW's S-chain (after the last NT has been expanded as a chain):
RSW wrote:(5=9)r1c2 - (9=1)r2c1 - (1=3)r3c1 - (3=256)r3c689 => -5r3c2
This also illustrates why a the size of a Subset (here 3) has to be counted in the total length of a chain, so that the two versions have the same global size (6). (*)
Considering that the puzzle is in W4, I prefer a 2-step solution, using only xy-chains[≤4]:
- Code: Select all
biv-chain-rc[3]: r2c9{n5 n2} - r2c3{n2 n8} - r3c2{n8 n5} ==> r3c8 ≠ 5, r3c9 ≠ 5
singles ==> r2c9 = 5, r7c8 = 5
whip[1]: b3n2{r3c9 .} ==> r3c5 ≠ 2, r3c6 ≠ 2
biv-chain-rc[4]: r1c2{n5 n9} - r2c1{n9 n1} - r3c1{n1 n3} - r3c6{n3 n5} ==> r3c2 ≠ 5, r1c5 ≠ 5, r1c6 ≠ 5
stte
The second chain could also be:
- Code: Select all
biv-chain-rc[4]: r1c3{n3 n2} - r2c3{n2 n8} - r3c2{n8 n5} - r3c6{n5 n3} ==> r3c1 ≠ 3, r1c4 ≠ 3, r1c6 ≠ 3
*[Edit]:The same correspondence works for pjb's S-chain with a NQ, but it requires a braid instead of a whip:
pjb wrote:(9=1)r2c1 - (1=8)r3c12689 - (8=9)r9c2 => -9 r1c2, r7c2
braid[6]: r2c1{n9 n1} - r3c1{n1 n3} - c2n5{r1 r3} - r3c6{n3 n2} - r3c8{n2 n6} - r3c9{n6 .} ==> r1c2 ≠ 9
RSW's second elimination is not necessary for stte