.
- Code: Select all
Resolution state after Singles and whips[1]:
+-------------------------+-------------------------+-------------------------+
! 16 2 167 ! 1478 17 1478 ! 5 9 3 !
! 8 13 137 ! 5 1279 1279 ! 4 6 17 !
! 9 4 5 ! 137 6 137 ! 12 127 8 !
+-------------------------+-------------------------+-------------------------+
! 145 1589 2 ! 14679 3 145679 ! 189 145 1469 !
! 145 6 149 ! 149 8 1459 ! 7 3 2 !
! 7 13589 13489 ! 2 159 14569 ! 189 145 1469 !
+-------------------------+-------------------------+-------------------------+
! 1256 159 169 ! 1679 4 125679 ! 3 8 179 !
! 12345 7 1489 ! 1389 1259 123589 ! 6 124 149 !
! 12346 189 14689 ! 136789 1279 1236789 ! 129 1247 5 !
+-------------------------+-------------------------+-------------------------+
There is no W1-anti-backdoor and therefore no 1-step solution and no real 2-step solution. However, if you don't count basics (NP and HP) as steps, the simplest-first solution is 2-step (the steps in bold):
hidden-pairs-in-a-row: r2{n2 n9}{c5 c6} ==> r2c6 ≠ 7, r2c6 ≠ 1, r2c5 ≠ 7, r2c5 ≠ 1
hidden-pairs-in-a-row: r1{n4 n8}{c4 c6} ==> r1c6 ≠ 7, r1c6 ≠ 1, r1c4 ≠ 7, r1c4 ≠ 1
finned-x-wing-in-columns: n7{c8 c5}{r9 r3} ==> r3c6 ≠ 7, r3c4 ≠ 7singles ==> r1c5 = 7, r2c3 = 7, r2c9 = 1, r2c2 = 3, r3c7 = 2, r3c8 = 7, r7c9 = 7, r6c3 = 3
whip[1]: c3n8{r9 .} ==> r9c2 ≠ 8
naked-pairs-in-a-row: r9{c2 c7}{n1 n9} ==> r9c8 ≠ 1, r9c6 ≠ 9, r9c6 ≠ 1, r9c5 ≠ 9, r9c5 ≠ 1, r9c4 ≠ 9, r9c4 ≠ 1, r9c3 ≠ 9, r9c3 ≠ 1, r9c1 ≠ 1
singles ==> r9c5 = 2, r2c5 = 9, r2c6 = 2, r9c8 = 4, r8c9 = 9, r9c7 = 1, r8c8 = 2, r9c2 = 9, r5c3 = 9, r8c3 = 4, r9c3 = 8, r7c1 = 2
naked-pairs-in-a-row: r6{c5 c8}{n1 n5} ==> r6c6 ≠ 5, r6c6 ≠ 1, r6c2 ≠ 5, r6c2 ≠ 1
singles ==> r6c2 = 8, r6c7 = 9, r4c7 = 8
naked-pairs-in-a-row: r4{c2 c8}{n1 n5} ==> r4c6 ≠ 5, r4c6 ≠ 1, r4c4 ≠ 1, r4c1 ≠ 5, r4c1 ≠ 1
singles ==> r4c1 = 4, r4c9 = 6, r6c9 = 4, r6c6 = 6
finned-x-wing-in-columns: n5{c1 c6}{r5 r8} ==> r8c5 ≠ 5stte