m_b_metcalf wrote:A curiosity from the current Patterns Game. Not a one-step pony, and not for the faint-hearted.
SER = 7.5
- Code: Select all
Resolution state after Singles and whips[1]:
+----------------------+----------------------+----------------------+
! 46789 469 1 ! 3589 3579 2 ! 3489 689 3468 !
! 6789 3 2789 ! 89 4 1789 ! 1289 5 1268 !
! 5 249 289 ! 6 139 189 ! 123489 1289 7 !
+----------------------+----------------------+----------------------+
! 3489 49 6 ! 1 2379 4789 ! 24789 2789 5 !
! 13489 7 3589 ! 234589 2359 4589 ! 6 1289 1248 !
! 2 1459 589 ! 4589 579 6 ! 14789 3 148 !
+----------------------+----------------------+----------------------+
! 1367 1256 2357 ! 245 8 145 ! 1237 1267 9 !
! 1679 8 2579 ! 259 12569 3 ! 127 4 126 !
! 1369 1269 4 ! 7 1269 19 ! 5 1268 12368 !
+----------------------+----------------------+----------------------+
218 candidates.
1) Simplest-first solution in S+Z4 (using only reversible patterns):- Code: Select all
finned-x-wing-in-columns: n5{c6 c2}{r7 r5} ==> r5c3≠5
whip[1]: r5n5{c6 .} ==> r6c4≠5, r6c5≠5
finned-swordfish-in-columns: n3{c3 c4 c7}{r7 r5 r1} ==> r1c9≠3
singles ==> r9c9=3, r9c8=8
finned-x-wing-in-columns: n6{c8 c2}{r1 r7} ==> r7c1≠6
finned-swordfish-in-rows: n7{r6 r1 r8}{c7 c5 c1} ==> r7c1≠7
z-chain[3]: r9c6{n9 n1} - r3c6{n1 n8} - r2c4{n8 .} ==> r2c6≠9
biv-chain[4]: r4c2{n9 n4} - r3n4{c2 c7} - r3n3{c7 c5} - r4n3{c5 c1} ==> r4c1≠9
biv-chain[4]: r1n7{c1 c5} - r6n7{c5 c7} - c8n7{r4 r7} - c8n6{r7 r1} ==> r1c1≠6
biv-chain[4]: b1n6{r2c1 r1c2} - c8n6{r1 r7} - c8n7{r7 r4} - c6n7{r4 r2} ==> r2c1≠7
z-chain[4]: c7n3{r1 r3} - b3n4{r3c7 r1c9} - r1c2{n4 n6} - r1c8{n6 .} ==> r1c7≠9
z-chain[4]: r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r7c2≠6
w1-tte
I could indeed find no 1-step solution (there's no W1 anti-backdoor).
2) 2-step solutionsThere are 6 2-step (more precisely 2-elimination) solutions in S+W6:
- 4 starting with a swordfish in columns:
- Code: Select all
finned-swordfish-in-columns: n3{c3 c4 c7}{r7 r5 r1} ==> r1c9≠3
singles ==> r9c9=3, r9c8=8
whip[6]: b1n6{r1c1 r2c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r1c8≠6
OR:
whip[6]: r2n6{c9 c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r8c9≠6
w1-tte
- Code: Select all
finned-swordfish-in-columns: n3{c4 c9 c3}{r5 r1 r9} ==> r9c1≠3
singles ==> r9c9=3, r9c8=8
whip[6]: r2n6{c9 c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r8c9≠6
OR:
whip[6]: r2n6{c9 c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r1c8≠6
w1-tte
- and 2 starting with a swordfish in rows:
- Code: Select all
finned-swordfish-in-rows: n3{r4 r3 r9}{c1 c5 c7} ==> r7c7≠3
singles ==> r9c9=3, r9c8=8
whip[6]: r2n6{c9 c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r1c8≠6
OR
whip[6]: r2n6{c9 c1} - r7n6{c1 c2} - r9n6{c2 c5} - r9n2{c5 c2} - c2n1{r9 r6} - c2n5{r6 .} ==> r8c9≠6
w1-tte
Note that, in the last two groups of 2 solutions, only the target of the final whip is different.