If there is, what is the maximum number of clues of a pattern that has only 1 valid sudoku?
For instance this sudoku is interesting:
- Code: Select all
1 . .|. . .|. . 2
. 3 .|4 . 5|. . .
. . .|. . .|6 . .
-----+-----+-----
. . 5|. . .|7 . .
. . .|3 . 8|. . .
. . 6|. . .|2 . .
-----+-----+-----
. . 2|. . .|. . .
. . .|9 . 1|. 3 .
7 . .|. . .|. . 4
If you change the values of up to five clues and get a valid sudoku, then the sudoku obtained is isomorphic to the starting sudoku, though I have not proved yet that this pattern has just a valid sudoku.
I'll do a research on gordon's list to see if I can find anything interesting.
Addendum: In gordon's list of 17's there are a lot of patterns with a unique sudoku.